Loading…

Stability of the sectored morphology of polymer crystallites

When an entangled interpenetrating collection of long flexible polymer chains dispersed in a suitable solvent is cooled to low enough temperatures, thin lamellar crystals form. Remarkably, these lamellae are sectored, with several growth sectors that have differing melting temperatures and growth ki...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2016-09, Vol.94 (3-1), p.032506-032506, Article 032506
Main Authors: Alageshan, Jaya Kumar, Hatwalne, Yashodhan, Muthukumar, Murugappan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-fc5eb970080ecd56c897b1619add4042a82e20471f89809427f3f066af3827283
cites cdi_FETCH-LOGICAL-c347t-fc5eb970080ecd56c897b1619add4042a82e20471f89809427f3f066af3827283
container_end_page 032506
container_issue 3-1
container_start_page 032506
container_title Physical review. E
container_volume 94
creator Alageshan, Jaya Kumar
Hatwalne, Yashodhan
Muthukumar, Murugappan
description When an entangled interpenetrating collection of long flexible polymer chains dispersed in a suitable solvent is cooled to low enough temperatures, thin lamellar crystals form. Remarkably, these lamellae are sectored, with several growth sectors that have differing melting temperatures and growth kinetics, eluding so far an understanding of their origins. We present a theoretical model to explain this six-decade-old challenge by addressing the elasticity of fold surfaces of finite-sized lamella in the presence of disclination-type topological defects arising from anisotropic line tension. Entrapment of a disclination defect in a lamella results in sectors separated by walls, which are soliton solutions of a two-dimensional elliptic sine-Gordon equation. For flat square morphologies, exact results show that sectored squares are more stable than plain squares if the dimensionless anisotropic line tension parameter α=γ_{an}/sqrt[h_{4}K_{ϕ}] (γ_{an} = anisotropic line tension, h_{4} = fold energy parameter, K_{ϕ} = elastic constant for two-dimensional orientational deformation) is above a critical value, which depends on the size of the square.
doi_str_mv 10.1103/PhysRevE.94.032506
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835410283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835410283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-fc5eb970080ecd56c897b1619add4042a82e20471f89809427f3f066af3827283</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMozjDOH3AhXbrpePNok4AbGXzBgOJjHdI0cSqtqUlG6L-3Oo_VPXC_cxYfQucYFhgDvXpeD_HF_twuJFsAJQWUR2hKGIccoKDHh8yKCZrH-AkAuATJMTlFE8I5lZywKbp-Tbpq2iYNmXdZWtssWpN8sHXW-dCvfes__l-9b4fOhsyEISbdjg0bz9CJ0220892dofe727flQ756un9c3qxyQxlPuTOFrSQHEGBNXZRGSF7hEktd1wwY0YJYAoxjJ6QAyQh31EFZakcF4UTQGbrc7vbBf29sTKprorFtq7-s30SFBS0YhpEcUbJFTfAxButUH5pOh0FhUH_i1F6ckkxtxY2li93-pupsfajsNdFfACxp5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835410283</pqid></control><display><type>article</type><title>Stability of the sectored morphology of polymer crystallites</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Alageshan, Jaya Kumar ; Hatwalne, Yashodhan ; Muthukumar, Murugappan</creator><creatorcontrib>Alageshan, Jaya Kumar ; Hatwalne, Yashodhan ; Muthukumar, Murugappan</creatorcontrib><description>When an entangled interpenetrating collection of long flexible polymer chains dispersed in a suitable solvent is cooled to low enough temperatures, thin lamellar crystals form. Remarkably, these lamellae are sectored, with several growth sectors that have differing melting temperatures and growth kinetics, eluding so far an understanding of their origins. We present a theoretical model to explain this six-decade-old challenge by addressing the elasticity of fold surfaces of finite-sized lamella in the presence of disclination-type topological defects arising from anisotropic line tension. Entrapment of a disclination defect in a lamella results in sectors separated by walls, which are soliton solutions of a two-dimensional elliptic sine-Gordon equation. For flat square morphologies, exact results show that sectored squares are more stable than plain squares if the dimensionless anisotropic line tension parameter α=γ_{an}/sqrt[h_{4}K_{ϕ}] (γ_{an} = anisotropic line tension, h_{4} = fold energy parameter, K_{ϕ} = elastic constant for two-dimensional orientational deformation) is above a critical value, which depends on the size of the square.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.032506</identifier><identifier>PMID: 27739724</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-09, Vol.94 (3-1), p.032506-032506, Article 032506</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-fc5eb970080ecd56c897b1619add4042a82e20471f89809427f3f066af3827283</citedby><cites>FETCH-LOGICAL-c347t-fc5eb970080ecd56c897b1619add4042a82e20471f89809427f3f066af3827283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27739724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alageshan, Jaya Kumar</creatorcontrib><creatorcontrib>Hatwalne, Yashodhan</creatorcontrib><creatorcontrib>Muthukumar, Murugappan</creatorcontrib><title>Stability of the sectored morphology of polymer crystallites</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>When an entangled interpenetrating collection of long flexible polymer chains dispersed in a suitable solvent is cooled to low enough temperatures, thin lamellar crystals form. Remarkably, these lamellae are sectored, with several growth sectors that have differing melting temperatures and growth kinetics, eluding so far an understanding of their origins. We present a theoretical model to explain this six-decade-old challenge by addressing the elasticity of fold surfaces of finite-sized lamella in the presence of disclination-type topological defects arising from anisotropic line tension. Entrapment of a disclination defect in a lamella results in sectors separated by walls, which are soliton solutions of a two-dimensional elliptic sine-Gordon equation. For flat square morphologies, exact results show that sectored squares are more stable than plain squares if the dimensionless anisotropic line tension parameter α=γ_{an}/sqrt[h_{4}K_{ϕ}] (γ_{an} = anisotropic line tension, h_{4} = fold energy parameter, K_{ϕ} = elastic constant for two-dimensional orientational deformation) is above a critical value, which depends on the size of the square.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMozjDOH3AhXbrpePNok4AbGXzBgOJjHdI0cSqtqUlG6L-3Oo_VPXC_cxYfQucYFhgDvXpeD_HF_twuJFsAJQWUR2hKGIccoKDHh8yKCZrH-AkAuATJMTlFE8I5lZywKbp-Tbpq2iYNmXdZWtssWpN8sHXW-dCvfes__l-9b4fOhsyEISbdjg0bz9CJ0220892dofe727flQ756un9c3qxyQxlPuTOFrSQHEGBNXZRGSF7hEktd1wwY0YJYAoxjJ6QAyQh31EFZakcF4UTQGbrc7vbBf29sTKprorFtq7-s30SFBS0YhpEcUbJFTfAxButUH5pOh0FhUH_i1F6ckkxtxY2li93-pupsfajsNdFfACxp5A</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Alageshan, Jaya Kumar</creator><creator>Hatwalne, Yashodhan</creator><creator>Muthukumar, Murugappan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201609</creationdate><title>Stability of the sectored morphology of polymer crystallites</title><author>Alageshan, Jaya Kumar ; Hatwalne, Yashodhan ; Muthukumar, Murugappan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-fc5eb970080ecd56c897b1619add4042a82e20471f89809427f3f066af3827283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alageshan, Jaya Kumar</creatorcontrib><creatorcontrib>Hatwalne, Yashodhan</creatorcontrib><creatorcontrib>Muthukumar, Murugappan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alageshan, Jaya Kumar</au><au>Hatwalne, Yashodhan</au><au>Muthukumar, Murugappan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the sectored morphology of polymer crystallites</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-09</date><risdate>2016</risdate><volume>94</volume><issue>3-1</issue><spage>032506</spage><epage>032506</epage><pages>032506-032506</pages><artnum>032506</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>When an entangled interpenetrating collection of long flexible polymer chains dispersed in a suitable solvent is cooled to low enough temperatures, thin lamellar crystals form. Remarkably, these lamellae are sectored, with several growth sectors that have differing melting temperatures and growth kinetics, eluding so far an understanding of their origins. We present a theoretical model to explain this six-decade-old challenge by addressing the elasticity of fold surfaces of finite-sized lamella in the presence of disclination-type topological defects arising from anisotropic line tension. Entrapment of a disclination defect in a lamella results in sectors separated by walls, which are soliton solutions of a two-dimensional elliptic sine-Gordon equation. For flat square morphologies, exact results show that sectored squares are more stable than plain squares if the dimensionless anisotropic line tension parameter α=γ_{an}/sqrt[h_{4}K_{ϕ}] (γ_{an} = anisotropic line tension, h_{4} = fold energy parameter, K_{ϕ} = elastic constant for two-dimensional orientational deformation) is above a critical value, which depends on the size of the square.</abstract><cop>United States</cop><pmid>27739724</pmid><doi>10.1103/PhysRevE.94.032506</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2016-09, Vol.94 (3-1), p.032506-032506, Article 032506
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1835410283
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Stability of the sectored morphology of polymer crystallites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%20sectored%20morphology%20of%20polymer%20crystallites&rft.jtitle=Physical%20review.%20E&rft.au=Alageshan,%20Jaya%20Kumar&rft.date=2016-09&rft.volume=94&rft.issue=3-1&rft.spage=032506&rft.epage=032506&rft.pages=032506-032506&rft.artnum=032506&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.032506&rft_dat=%3Cproquest_cross%3E1835410283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-fc5eb970080ecd56c897b1619add4042a82e20471f89809427f3f066af3827283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835410283&rft_id=info:pmid/27739724&rfr_iscdi=true