Loading…

Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage

The performance of nanomaterials in electrochemical energy conversion (fuel cells) and storage (secondary batteries) strongly depends on the nature of their surfaces. Designing the structure of electrode materials is the key approach to achieving better performance. Metal or metal oxide nanocrystals...

Full description

Saved in:
Bibliographic Details
Published in:Accounts of chemical research 2016-11, Vol.49 (11), p.2569-2577
Main Authors: Sheng, Tian, Xu, Yue-Feng, Jiang, Yan-Xia, Huang, Ling, Tian, Na, Zhou, Zhi-You, Broadwell, Ian, Sun, Shi-Gang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The performance of nanomaterials in electrochemical energy conversion (fuel cells) and storage (secondary batteries) strongly depends on the nature of their surfaces. Designing the structure of electrode materials is the key approach to achieving better performance. Metal or metal oxide nanocrystals (NCs) with high-energy surfaces and open surface structures have attained significant attention in the past decade since such features possess intrinsically exceptional properties. However, they are thermodynamically metastable, resulting in a huge challenge in their shape-controlled synthesis. The tuning of material structure, design, and performance on the nanoscale for electrochemical energy conversion and storage has attracted extended attention over the past few years. In this Account, recent progress made in shape-controlled synthesis of nanomaterials with high-energy surfaces and open surface structures using both electrochemical methods and surfactant-based wet chemical route are reviewed. In fuel cells, the most important catalytic materials are Pt and Pd and their NCs with high-energy surfaces of convex or concave morphology. These exhibit remarkable activity toward electrooxidation of small organic molecules, such as formic acid, methanol, and ethanol and so on. In practical applications, the successful synthesis of Pt NCs with high-energy surfaces of small sizes (sub-10 nm) realized a superior high mass activity. The electrocatalytic performances have been further boosted by synergetic effects in bimetallic systems, either through surface decoration using foreign metal atoms or by alloying in which the high-index facet structure is preserved and the electronic structure of the NCs is altered. The intrinsic relationship of high electrocatalytic performance dependent on open structure and high-energy surface is also valid for (metal) oxide nanomaterials used in Li ion batteries (LIB). It is essential for the anode nanomaterials to have optimized structures to keep them more stable during the charge/discharge processes for reducing damaging volume expansion via intercalation and subsequent reduced battery lifetime. In the case of cathodes, tuning the surface structure of nanomaterials should be one of the most beneficial strategies to enhance the capacity and rate performance. In addition, metal oxides with unique defective structure of high catalytic activity and carbon materials of porous structure for facilitating fast Li+ diffusion paths and effici
ISSN:0001-4842
1520-4898
DOI:10.1021/acs.accounts.6b00485