Loading…
Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation
Exosomes, the smallest subgroup of extracellular vesicles, have been recognized as extracellular organelles that contain genetic and proteomic information for long distance intercellular communication. Exosome-based drug delivery is currently a subject of intensive research. Here, we report a novel...
Saved in:
Published in: | Journal of controlled release 2016-12, Vol.243, p.160-171 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exosomes, the smallest subgroup of extracellular vesicles, have been recognized as extracellular organelles that contain genetic and proteomic information for long distance intercellular communication. Exosome-based drug delivery is currently a subject of intensive research. Here, we report a novel strategy to produce nanoscale exosome-mimics (EMs) in sufficient quantity for gene delivery in cancer both in vitro and in vivo. Size-controllable EMs were generated at a high yield by serial extrusion of non-tumorigenic epithelial MCF-10A cells through filters with different pore sizes. siRNA was then encapsulated into the EMs by electroporation. Biosafety and uptake efficiency of the EMs were evaluated both in vitro and in vivo. The mechanism underlying their cellular endocytosis was also studied.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2016.10.008 |