Loading…
Spectroscopic Evidence for Room Temperature Interaction of Molecular Oxygen with Cobalt Porphyrin Linker Sites within a Metal–Organic Framework
Metalloporphyrin-based metal–organic frameworks offer a promising platform for developing solid-state porous materials with accessible, coordinatively unsaturated metal sites. Probing small-molecule interactions at the metalloporphyrin sites within these materials on a molecular level under ambient...
Saved in:
Published in: | Inorganic chemistry 2016-10, Vol.55 (20), p.10110-10113 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metalloporphyrin-based metal–organic frameworks offer a promising platform for developing solid-state porous materials with accessible, coordinatively unsaturated metal sites. Probing small-molecule interactions at the metalloporphyrin sites within these materials on a molecular level under ambient conditions is crucial for both understanding and ultimately harnessing this functionality for potential catalytic purposes. Co-PCN-222, a metal–organic framework based on cobalt(II) porphyrin linkers. is investigated using in situ UV–vis diffuse-reflectance and X-ray absorption spectroscopy. Spectroscopic evidence for the axial interaction of diatomic oxygen with the framework’s open metalloporphyrin sites at room temperature is presented and discussed. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.6b01889 |