Loading…

Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production

The Ustilaginaceae family of smut fungi, especially Ustilago maydis, gained biotechnological interest over the last years, amongst others due to its ability to naturally produce the versatile bio-based building block itaconate. Along with itaconate, U. maydis also produces 2-hydroxyparaconate. The l...

Full description

Saved in:
Bibliographic Details
Published in:Metabolic engineering 2016-11, Vol.38, p.427-435
Main Authors: Geiser, Elena, Przybilla, Sandra K., Engel, Meike, Kleineberg, Wiebke, Büttner, Linda, Sarikaya, Eda, Hartog, Tim den, Klankermayer, Jürgen, Leitner, Walter, Bölker, Michael, Blank, Lars M., Wierckx, Nick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-e27b0f7f44cebbce595a4a755fec29a8e7a4008e74d2050eca711430571808ce3
cites cdi_FETCH-LOGICAL-c359t-e27b0f7f44cebbce595a4a755fec29a8e7a4008e74d2050eca711430571808ce3
container_end_page 435
container_issue
container_start_page 427
container_title Metabolic engineering
container_volume 38
creator Geiser, Elena
Przybilla, Sandra K.
Engel, Meike
Kleineberg, Wiebke
Büttner, Linda
Sarikaya, Eda
Hartog, Tim den
Klankermayer, Jürgen
Leitner, Walter
Bölker, Michael
Blank, Lars M.
Wierckx, Nick
description The Ustilaginaceae family of smut fungi, especially Ustilago maydis, gained biotechnological interest over the last years, amongst others due to its ability to naturally produce the versatile bio-based building block itaconate. Along with itaconate, U. maydis also produces 2-hydroxyparaconate. The latter was proposed to be derived from itaconate, but the underlying biochemistry and associated genes were thus far unknown. Here, we confirm that 2-hydroxyparaconate is a secondary metabolite of U. maydis and propose an extension of U. maydis’ itaconate pathway from itaconate to 2-hydroxyparaconate. This conversion is catalyzed by the P450 monooxygenase Cyp3, encoded by cyp3, a gene, which is adjacent to the itaconate gene cluster of U. maydis. By deletion of cyp3 and simultaneous overexpression of the gene cluster regulator ria1, it was possible to generate an itaconate hyper producer strain, which produced up to 4.5–fold more itaconate in comparison to the wildtype without the by-product 2-hydroxyparaconate. By adjusting culture conditions in controlled pulsed fed-batch fermentations, a product to substrate yield of 67% of the theoretical maximum was achieved. In all, the titer, rate and yield of itaconate produced by U. maydis was considerably increased, thus contributing to the industrial application of this unicellular fungus for the biotechnological production of this valuable biomass derived chemical. •2-hydroxyparaconate is a secondary metabolite of Ustilago maydis.•The P450 monooxygenase Cyp3 catalyzes the conversion of itaconate to 2-hydroxyparaconate in U. maydis.•Itaconate production by U. maydis could be increased 4.5 fold by metabolic engineering.•Production of 63gL−1 itaconate in controlled fed-batch cultivation.
doi_str_mv 10.1016/j.ymben.2016.10.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835453546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717616300805</els_id><sourcerecordid>1835453546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e27b0f7f44cebbce595a4a755fec29a8e7a4008e74d2050eca711430571808ce3</originalsourceid><addsrcrecordid>eNp9kE-L2zAQxUXZ0v37CQpFx70kHdmSFR96KKHNFhZ6ac5iLI9jBVtKLaVLvn2VTTbHPYg3Gt7MY36MfRYwFyCqr9v5YWzIz4v8yZ05QPWB3Qioq5kWC3l1qXV1zW5j3AIIoWrxiV0XWiuAUt4wtyJPyVmOvuWNC7an0VkcuPPRbfoUc5ECTz1xl9AGj4n4DlP_ggceOr6OyQ24CXzEQ-siJ4_NQFl69JZavptCu7fJBX_PPnY4RHo46x1b__zxZ_k0e_69-rX8_jyzparTjArdQKc7KS01jSVVK5SolerIFjUuSKMEyCLbAhSQRS2ELEHlm2Fhqbxjj6e9OfrvnmIyo4uWhgE9hX00YlEqqfKrsrU8We0UYpyoM7vJjTgdjABzZGy25pWxOTI-NjPjPPXlHLBvRmovM29Qs-HbyUD5zH-OJhOtoyMON5FNpg3u3YD_9L6P5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835453546</pqid></control><display><type>article</type><title>Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production</title><source>ScienceDirect Freedom Collection</source><creator>Geiser, Elena ; Przybilla, Sandra K. ; Engel, Meike ; Kleineberg, Wiebke ; Büttner, Linda ; Sarikaya, Eda ; Hartog, Tim den ; Klankermayer, Jürgen ; Leitner, Walter ; Bölker, Michael ; Blank, Lars M. ; Wierckx, Nick</creator><creatorcontrib>Geiser, Elena ; Przybilla, Sandra K. ; Engel, Meike ; Kleineberg, Wiebke ; Büttner, Linda ; Sarikaya, Eda ; Hartog, Tim den ; Klankermayer, Jürgen ; Leitner, Walter ; Bölker, Michael ; Blank, Lars M. ; Wierckx, Nick</creatorcontrib><description>The Ustilaginaceae family of smut fungi, especially Ustilago maydis, gained biotechnological interest over the last years, amongst others due to its ability to naturally produce the versatile bio-based building block itaconate. Along with itaconate, U. maydis also produces 2-hydroxyparaconate. The latter was proposed to be derived from itaconate, but the underlying biochemistry and associated genes were thus far unknown. Here, we confirm that 2-hydroxyparaconate is a secondary metabolite of U. maydis and propose an extension of U. maydis’ itaconate pathway from itaconate to 2-hydroxyparaconate. This conversion is catalyzed by the P450 monooxygenase Cyp3, encoded by cyp3, a gene, which is adjacent to the itaconate gene cluster of U. maydis. By deletion of cyp3 and simultaneous overexpression of the gene cluster regulator ria1, it was possible to generate an itaconate hyper producer strain, which produced up to 4.5–fold more itaconate in comparison to the wildtype without the by-product 2-hydroxyparaconate. By adjusting culture conditions in controlled pulsed fed-batch fermentations, a product to substrate yield of 67% of the theoretical maximum was achieved. In all, the titer, rate and yield of itaconate produced by U. maydis was considerably increased, thus contributing to the industrial application of this unicellular fungus for the biotechnological production of this valuable biomass derived chemical. •2-hydroxyparaconate is a secondary metabolite of Ustilago maydis.•The P450 monooxygenase Cyp3 catalyzes the conversion of itaconate to 2-hydroxyparaconate in U. maydis.•Itaconate production by U. maydis could be increased 4.5 fold by metabolic engineering.•Production of 63gL−1 itaconate in controlled fed-batch cultivation.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2016.10.006</identifier><identifier>PMID: 27750034</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>2-hydroxyparaconate ; 4-Butyrolactone - analogs &amp; derivatives ; 4-Butyrolactone - metabolism ; Aspergillus terreus ; Biosynthetic Pathways - genetics ; Cytochrome P450 Family 3 - genetics ; Gene Expression Regulation, Fungal - genetics ; Genetic Enhancement - methods ; Itaconate ; Metabolic engineering ; Metabolic Engineering - methods ; Metabolic Networks and Pathways - genetics ; P450 monooxygenase ; Secondary metabolites ; Succinates - isolation &amp; purification ; Succinates - metabolism ; Up-Regulation - genetics ; Ustilago - classification ; Ustilago - physiology ; Ustilago maydis</subject><ispartof>Metabolic engineering, 2016-11, Vol.38, p.427-435</ispartof><rights>2016 International Metabolic Engineering Society</rights><rights>Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e27b0f7f44cebbce595a4a755fec29a8e7a4008e74d2050eca711430571808ce3</citedby><cites>FETCH-LOGICAL-c359t-e27b0f7f44cebbce595a4a755fec29a8e7a4008e74d2050eca711430571808ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27750034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geiser, Elena</creatorcontrib><creatorcontrib>Przybilla, Sandra K.</creatorcontrib><creatorcontrib>Engel, Meike</creatorcontrib><creatorcontrib>Kleineberg, Wiebke</creatorcontrib><creatorcontrib>Büttner, Linda</creatorcontrib><creatorcontrib>Sarikaya, Eda</creatorcontrib><creatorcontrib>Hartog, Tim den</creatorcontrib><creatorcontrib>Klankermayer, Jürgen</creatorcontrib><creatorcontrib>Leitner, Walter</creatorcontrib><creatorcontrib>Bölker, Michael</creatorcontrib><creatorcontrib>Blank, Lars M.</creatorcontrib><creatorcontrib>Wierckx, Nick</creatorcontrib><title>Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>The Ustilaginaceae family of smut fungi, especially Ustilago maydis, gained biotechnological interest over the last years, amongst others due to its ability to naturally produce the versatile bio-based building block itaconate. Along with itaconate, U. maydis also produces 2-hydroxyparaconate. The latter was proposed to be derived from itaconate, but the underlying biochemistry and associated genes were thus far unknown. Here, we confirm that 2-hydroxyparaconate is a secondary metabolite of U. maydis and propose an extension of U. maydis’ itaconate pathway from itaconate to 2-hydroxyparaconate. This conversion is catalyzed by the P450 monooxygenase Cyp3, encoded by cyp3, a gene, which is adjacent to the itaconate gene cluster of U. maydis. By deletion of cyp3 and simultaneous overexpression of the gene cluster regulator ria1, it was possible to generate an itaconate hyper producer strain, which produced up to 4.5–fold more itaconate in comparison to the wildtype without the by-product 2-hydroxyparaconate. By adjusting culture conditions in controlled pulsed fed-batch fermentations, a product to substrate yield of 67% of the theoretical maximum was achieved. In all, the titer, rate and yield of itaconate produced by U. maydis was considerably increased, thus contributing to the industrial application of this unicellular fungus for the biotechnological production of this valuable biomass derived chemical. •2-hydroxyparaconate is a secondary metabolite of Ustilago maydis.•The P450 monooxygenase Cyp3 catalyzes the conversion of itaconate to 2-hydroxyparaconate in U. maydis.•Itaconate production by U. maydis could be increased 4.5 fold by metabolic engineering.•Production of 63gL−1 itaconate in controlled fed-batch cultivation.</description><subject>2-hydroxyparaconate</subject><subject>4-Butyrolactone - analogs &amp; derivatives</subject><subject>4-Butyrolactone - metabolism</subject><subject>Aspergillus terreus</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Cytochrome P450 Family 3 - genetics</subject><subject>Gene Expression Regulation, Fungal - genetics</subject><subject>Genetic Enhancement - methods</subject><subject>Itaconate</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>P450 monooxygenase</subject><subject>Secondary metabolites</subject><subject>Succinates - isolation &amp; purification</subject><subject>Succinates - metabolism</subject><subject>Up-Regulation - genetics</subject><subject>Ustilago - classification</subject><subject>Ustilago - physiology</subject><subject>Ustilago maydis</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE-L2zAQxUXZ0v37CQpFx70kHdmSFR96KKHNFhZ6ac5iLI9jBVtKLaVLvn2VTTbHPYg3Gt7MY36MfRYwFyCqr9v5YWzIz4v8yZ05QPWB3Qioq5kWC3l1qXV1zW5j3AIIoWrxiV0XWiuAUt4wtyJPyVmOvuWNC7an0VkcuPPRbfoUc5ECTz1xl9AGj4n4DlP_ggceOr6OyQ24CXzEQ-siJ4_NQFl69JZavptCu7fJBX_PPnY4RHo46x1b__zxZ_k0e_69-rX8_jyzparTjArdQKc7KS01jSVVK5SolerIFjUuSKMEyCLbAhSQRS2ELEHlm2Fhqbxjj6e9OfrvnmIyo4uWhgE9hX00YlEqqfKrsrU8We0UYpyoM7vJjTgdjABzZGy25pWxOTI-NjPjPPXlHLBvRmovM29Qs-HbyUD5zH-OJhOtoyMON5FNpg3u3YD_9L6P5w</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Geiser, Elena</creator><creator>Przybilla, Sandra K.</creator><creator>Engel, Meike</creator><creator>Kleineberg, Wiebke</creator><creator>Büttner, Linda</creator><creator>Sarikaya, Eda</creator><creator>Hartog, Tim den</creator><creator>Klankermayer, Jürgen</creator><creator>Leitner, Walter</creator><creator>Bölker, Michael</creator><creator>Blank, Lars M.</creator><creator>Wierckx, Nick</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201611</creationdate><title>Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production</title><author>Geiser, Elena ; Przybilla, Sandra K. ; Engel, Meike ; Kleineberg, Wiebke ; Büttner, Linda ; Sarikaya, Eda ; Hartog, Tim den ; Klankermayer, Jürgen ; Leitner, Walter ; Bölker, Michael ; Blank, Lars M. ; Wierckx, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e27b0f7f44cebbce595a4a755fec29a8e7a4008e74d2050eca711430571808ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>2-hydroxyparaconate</topic><topic>4-Butyrolactone - analogs &amp; derivatives</topic><topic>4-Butyrolactone - metabolism</topic><topic>Aspergillus terreus</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Cytochrome P450 Family 3 - genetics</topic><topic>Gene Expression Regulation, Fungal - genetics</topic><topic>Genetic Enhancement - methods</topic><topic>Itaconate</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>P450 monooxygenase</topic><topic>Secondary metabolites</topic><topic>Succinates - isolation &amp; purification</topic><topic>Succinates - metabolism</topic><topic>Up-Regulation - genetics</topic><topic>Ustilago - classification</topic><topic>Ustilago - physiology</topic><topic>Ustilago maydis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiser, Elena</creatorcontrib><creatorcontrib>Przybilla, Sandra K.</creatorcontrib><creatorcontrib>Engel, Meike</creatorcontrib><creatorcontrib>Kleineberg, Wiebke</creatorcontrib><creatorcontrib>Büttner, Linda</creatorcontrib><creatorcontrib>Sarikaya, Eda</creatorcontrib><creatorcontrib>Hartog, Tim den</creatorcontrib><creatorcontrib>Klankermayer, Jürgen</creatorcontrib><creatorcontrib>Leitner, Walter</creatorcontrib><creatorcontrib>Bölker, Michael</creatorcontrib><creatorcontrib>Blank, Lars M.</creatorcontrib><creatorcontrib>Wierckx, Nick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiser, Elena</au><au>Przybilla, Sandra K.</au><au>Engel, Meike</au><au>Kleineberg, Wiebke</au><au>Büttner, Linda</au><au>Sarikaya, Eda</au><au>Hartog, Tim den</au><au>Klankermayer, Jürgen</au><au>Leitner, Walter</au><au>Bölker, Michael</au><au>Blank, Lars M.</au><au>Wierckx, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2016-11</date><risdate>2016</risdate><volume>38</volume><spage>427</spage><epage>435</epage><pages>427-435</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>The Ustilaginaceae family of smut fungi, especially Ustilago maydis, gained biotechnological interest over the last years, amongst others due to its ability to naturally produce the versatile bio-based building block itaconate. Along with itaconate, U. maydis also produces 2-hydroxyparaconate. The latter was proposed to be derived from itaconate, but the underlying biochemistry and associated genes were thus far unknown. Here, we confirm that 2-hydroxyparaconate is a secondary metabolite of U. maydis and propose an extension of U. maydis’ itaconate pathway from itaconate to 2-hydroxyparaconate. This conversion is catalyzed by the P450 monooxygenase Cyp3, encoded by cyp3, a gene, which is adjacent to the itaconate gene cluster of U. maydis. By deletion of cyp3 and simultaneous overexpression of the gene cluster regulator ria1, it was possible to generate an itaconate hyper producer strain, which produced up to 4.5–fold more itaconate in comparison to the wildtype without the by-product 2-hydroxyparaconate. By adjusting culture conditions in controlled pulsed fed-batch fermentations, a product to substrate yield of 67% of the theoretical maximum was achieved. In all, the titer, rate and yield of itaconate produced by U. maydis was considerably increased, thus contributing to the industrial application of this unicellular fungus for the biotechnological production of this valuable biomass derived chemical. •2-hydroxyparaconate is a secondary metabolite of Ustilago maydis.•The P450 monooxygenase Cyp3 catalyzes the conversion of itaconate to 2-hydroxyparaconate in U. maydis.•Itaconate production by U. maydis could be increased 4.5 fold by metabolic engineering.•Production of 63gL−1 itaconate in controlled fed-batch cultivation.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>27750034</pmid><doi>10.1016/j.ymben.2016.10.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2016-11, Vol.38, p.427-435
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_1835453546
source ScienceDirect Freedom Collection
subjects 2-hydroxyparaconate
4-Butyrolactone - analogs & derivatives
4-Butyrolactone - metabolism
Aspergillus terreus
Biosynthetic Pathways - genetics
Cytochrome P450 Family 3 - genetics
Gene Expression Regulation, Fungal - genetics
Genetic Enhancement - methods
Itaconate
Metabolic engineering
Metabolic Engineering - methods
Metabolic Networks and Pathways - genetics
P450 monooxygenase
Secondary metabolites
Succinates - isolation & purification
Succinates - metabolism
Up-Regulation - genetics
Ustilago - classification
Ustilago - physiology
Ustilago maydis
title Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20and%20biochemical%20insights%20into%20the%20itaconate%20pathway%20of%20Ustilago%20maydis%20enable%20enhanced%20production&rft.jtitle=Metabolic%20engineering&rft.au=Geiser,%20Elena&rft.date=2016-11&rft.volume=38&rft.spage=427&rft.epage=435&rft.pages=427-435&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2016.10.006&rft_dat=%3Cproquest_cross%3E1835453546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e27b0f7f44cebbce595a4a755fec29a8e7a4008e74d2050eca711430571808ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835453546&rft_id=info:pmid/27750034&rfr_iscdi=true