Loading…
3D shape analysis to reduce false positives for lung nodule detection systems
Using images from the Image Database Consortium and Image Database Resource Initiative (LIDC–IDRI), we developed a methodology for classifying lung nodules. The proposed methodology uses image processing and pattern recognition techniques. To classify volumes of interest into nodules and non-nodules...
Saved in:
Published in: | Medical & biological engineering & computing 2017-08, Vol.55 (8), p.1199-1213 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using images from the Image Database Consortium and Image Database Resource Initiative (LIDC–IDRI), we developed a methodology for classifying lung nodules. The proposed methodology uses image processing and pattern recognition techniques. To classify volumes of interest into nodules and non-nodules, we used shape measurements only, analyzing their shape using shape diagrams, proportion measurements, and a cylinder-based analysis. In addition, we use the support vector machine classifier. To test the proposed methodology, it was applied to 833 images from the LIDC–IDRI database, and cross-validation with
k
-fold, where
k
=
5
, was used to validate the results. The proposed methodology for the classification of nodules and non-nodules achieved a mean accuracy of 95.33 %. Lung cancer causes more deaths than any other cancer worldwide. Therefore, precocious detection allows for faster therapeutic intervention and a more favorable prognosis for the patient. Our proposed methodology contributes to the classification of lung nodules and should help in the diagnosis of lung cancer. |
---|---|
ISSN: | 0140-0118 1741-0444 |
DOI: | 10.1007/s11517-016-1582-x |