Loading…
Glacial Holocene environment of the southeastern Okhotsk Sea: evidence from geochemical and palaeontological data
Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in b...
Saved in:
Published in: | Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2002-01, Vol.177 (3), p.237-263 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in benthic foraminiferal and diatom assemblages provides additional palaeoceanographic evidence. AMS radiocarbon dating of the sediments and oxygen isotope stratigraphy serve as the basis for the age models of the cores for the last 20
14C kyr and for correlation between environmental variations in the Okhotsk Sea, and regional and global climate changes. Benthic foraminiferal assemblages in the two cores (depth 1590 and 1175 m) varied with time, so that we could recognise seven zones with different species composition. Changes in the benthic foraminiferal assemblages parallel major environmental and productivity variations. During the last glaciation, fluxes of organic matter to the sea floor showed strong seasonal variations, indicated by the presence of abundant
A. weddellensis and infaunal
Uvigerina spp. Benthic foraminiferal assemblages changed with warming at 12.5–11 and 10–8
14C kyr BP, when productivity blooms and high organic fluxes were coeval with global meltwater pulses 1A and 1B. Younger Dryas cooling caused a decline in productivity (11–10 kyr BP) affecting the benthic faunal community. Subsequent warming triggered intensive diatom production, opal accumulation and a strong oxygen deficiency, causing significant changes in benthic fauna assemblages from 5.26–4.4 kyr BP to present time. |
---|---|
ISSN: | 0031-0182 1872-616X |
DOI: | 10.1016/S0031-0182(01)00335-2 |