Loading…

Effect of transmembrane pressure control on energy efficiency during skim milk concentration by ultrafiltration at 10 and 50°C

The efficiency of the ultrafiltration process during skim milk concentration was studied using both dynamic and constant (465 or 672kPa) transmembrane pressure experiments at refrigerated temperature (10°C) and high temperature (50°C). The pilot-scale module was equipped with a 10-kDa polyethersulfo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2016-11, Vol.99 (11), p.8655-8664
Main Authors: Méthot-Hains, S., Benoit, S., Bouchard, C., Doyen, A., Bazinet, L., Pouliot, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The efficiency of the ultrafiltration process during skim milk concentration was studied using both dynamic and constant (465 or 672kPa) transmembrane pressure experiments at refrigerated temperature (10°C) and high temperature (50°C). The pilot-scale module was equipped with a 10-kDa polyethersulfone spiral-wound membrane element with a surface area of 2.04m2. Permeation flux, resistance-in-series model, mineral and protein rejection, and energy consumption were studied as a function of temperature and transmembrane pressure applied. Higher permeation flux values were systematically obtained at 50°C. Also, a significant temperature effect was found for calcium rejection, which was lower at 10°C compared with 50°C. Total hydraulic resistance and reversible fouling resistance were higher at 50°C than at 10°C. No change in protein rejection was observed, depending on the operating mode studied. Permeation flux, which was higher at 50°C, had lower pumping energy consumption compared with ultrafiltration at the colder temperature. Also, the low ultrafiltration temperature required a higher total energy consumption to reach the 3.6× retentate compared with ultrafiltration at 50°C. Overall, our study shows that the operating parameters and temperature can be optimized using an energy efficiency ratio.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2016-11504