Loading…

Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress

While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferri...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2016-12, Vol.172 (4), p.2445-2458
Main Authors: Shabala, Lana, Zhang, Jingyi, Pottosin, Igor, Bose, Jayakumar, Zhu, Min, Fuglsang, Anja Thoe, Velarde-Buendia, Ana, Massart, Amandine, Hill, Camilla Beate, Roessner, Ute, Bacic, Antony, Wu, Honghong, Azzarello, Elisa, Pandolfi, Camilla, Zhou, Meixue, Poschenrieder, Charlotte, Mancuso, Stefano, Shabala, Sergey
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3
cites
container_end_page 2458
container_issue 4
container_start_page 2445
container_title Plant physiology (Bethesda)
container_volume 172
creator Shabala, Lana
Zhang, Jingyi
Pottosin, Igor
Bose, Jayakumar
Zhu, Min
Fuglsang, Anja Thoe
Velarde-Buendia, Ana
Massart, Amandine
Hill, Camilla Beate
Roessner, Ute
Bacic, Antony
Wu, Honghong
Azzarello, Elisa
Pandolfi, Camilla
Zhou, Meixue
Poschenrieder, Charlotte
Mancuso, Stefano
Shabala, Sergey
description While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.
doi_str_mv 10.1104/pp.16.01347
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835517085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24854712</jstor_id><sourcerecordid>24854712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3</originalsourceid><addsrcrecordid>eNpFkc1uEzEUhS1ERdPCijXIyyI0wb9jzzJEhaAWgZqwHjmea-RqMh5sT6UseYk-DI_Dk9RtSlmdK51P9-qci9BrSuaUEvFhHOe0nhPKhXqGZlRyVjEp9HM0I6TMROvmGJ2kdE1Igah4gY6ZUoqQmszQ7RL6vtrsR6jWI1jvvMWrv7__VIvNd5MAL2z2Nz7vsR_wVQgZb3xKEyR8PphtX_SiwPgKMgzZhwGbocNfofMmF29hbe935sEIDn80sYc9PluF2MG0wzdT_9NEeIdzwGvT--H-zjpHSOklOnKmT_DqUU_Rj0_nm-Wquvz2-ctycVlZQUWunDbKulKC0KzRNW8ksY3miksGtGO1dFvmJCPGKrtlnAnJneFdqa2GrqEdP0Vnh71jDL9KrNzufLKlEjNAmFJLNZeSKqJlQd8fUBtDShFcO8YSLu5bStr7R7Tj2NK6fXhEod8-Lp62O-ie2H_NF-DNAbhOOcT_vtBSKMr4HYAljuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835517085</pqid></control><display><type>article</type><title>Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Shabala, Lana ; Zhang, Jingyi ; Pottosin, Igor ; Bose, Jayakumar ; Zhu, Min ; Fuglsang, Anja Thoe ; Velarde-Buendia, Ana ; Massart, Amandine ; Hill, Camilla Beate ; Roessner, Ute ; Bacic, Antony ; Wu, Honghong ; Azzarello, Elisa ; Pandolfi, Camilla ; Zhou, Meixue ; Poschenrieder, Charlotte ; Mancuso, Stefano ; Shabala, Sergey</creator><creatorcontrib>Shabala, Lana ; Zhang, Jingyi ; Pottosin, Igor ; Bose, Jayakumar ; Zhu, Min ; Fuglsang, Anja Thoe ; Velarde-Buendia, Ana ; Massart, Amandine ; Hill, Camilla Beate ; Roessner, Ute ; Bacic, Antony ; Wu, Honghong ; Azzarello, Elisa ; Pandolfi, Camilla ; Zhou, Meixue ; Poschenrieder, Charlotte ; Mancuso, Stefano ; Shabala, Sergey</creatorcontrib><description>While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.01347</identifier><identifier>PMID: 27770060</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Acclimatization - drug effects ; Allantoin - pharmacology ; Cations - metabolism ; Hordeum - drug effects ; Hordeum - enzymology ; Hordeum - physiology ; MEMBRANES, TRANSPORT, AND BIOENERGETICS ; Metabolome - drug effects ; Metabolomics ; Models, Biological ; Organ Specificity - drug effects ; Plant Epidermis - cytology ; Plant Epidermis - drug effects ; Plant Epidermis - metabolism ; Plant Roots - drug effects ; Plant Roots - enzymology ; Plant Roots - growth &amp; development ; Plant Roots - physiology ; Potassium - metabolism ; Proton-Translocating ATPases - metabolism ; Reactive Oxygen Species - metabolism ; Salinity ; Sodium - metabolism ; Sodium Chloride - pharmacology ; Stress, Physiological - drug effects</subject><ispartof>Plant physiology (Bethesda), 2016-12, Vol.172 (4), p.2445-2458</ispartof><rights>Copyright © 2016 American Society of Plant Biologists</rights><rights>2016 American Society of Plant Biologists. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3</citedby><orcidid>0000-0001-6629-0280 ; 0000-0002-8686-8761 ; 0000-0003-1153-8394 ; 0000-0001-7483-8605 ; 0000-0002-3818-0874 ; 0000-0003-1752-3986 ; 0000-0002-6482-2615 ; 0000-0002-6754-5553 ; 0000-0002-5360-8496 ; 0000-0003-3009-7854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24854712$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24854712$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27770060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shabala, Lana</creatorcontrib><creatorcontrib>Zhang, Jingyi</creatorcontrib><creatorcontrib>Pottosin, Igor</creatorcontrib><creatorcontrib>Bose, Jayakumar</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Fuglsang, Anja Thoe</creatorcontrib><creatorcontrib>Velarde-Buendia, Ana</creatorcontrib><creatorcontrib>Massart, Amandine</creatorcontrib><creatorcontrib>Hill, Camilla Beate</creatorcontrib><creatorcontrib>Roessner, Ute</creatorcontrib><creatorcontrib>Bacic, Antony</creatorcontrib><creatorcontrib>Wu, Honghong</creatorcontrib><creatorcontrib>Azzarello, Elisa</creatorcontrib><creatorcontrib>Pandolfi, Camilla</creatorcontrib><creatorcontrib>Zhou, Meixue</creatorcontrib><creatorcontrib>Poschenrieder, Charlotte</creatorcontrib><creatorcontrib>Mancuso, Stefano</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><title>Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.</description><subject>Acclimatization - drug effects</subject><subject>Allantoin - pharmacology</subject><subject>Cations - metabolism</subject><subject>Hordeum - drug effects</subject><subject>Hordeum - enzymology</subject><subject>Hordeum - physiology</subject><subject>MEMBRANES, TRANSPORT, AND BIOENERGETICS</subject><subject>Metabolome - drug effects</subject><subject>Metabolomics</subject><subject>Models, Biological</subject><subject>Organ Specificity - drug effects</subject><subject>Plant Epidermis - cytology</subject><subject>Plant Epidermis - drug effects</subject><subject>Plant Epidermis - metabolism</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - physiology</subject><subject>Potassium - metabolism</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Salinity</subject><subject>Sodium - metabolism</subject><subject>Sodium Chloride - pharmacology</subject><subject>Stress, Physiological - drug effects</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkc1uEzEUhS1ERdPCijXIyyI0wb9jzzJEhaAWgZqwHjmea-RqMh5sT6UseYk-DI_Dk9RtSlmdK51P9-qci9BrSuaUEvFhHOe0nhPKhXqGZlRyVjEp9HM0I6TMROvmGJ2kdE1Igah4gY6ZUoqQmszQ7RL6vtrsR6jWI1jvvMWrv7__VIvNd5MAL2z2Nz7vsR_wVQgZb3xKEyR8PphtX_SiwPgKMgzZhwGbocNfofMmF29hbe935sEIDn80sYc9PluF2MG0wzdT_9NEeIdzwGvT--H-zjpHSOklOnKmT_DqUU_Rj0_nm-Wquvz2-ctycVlZQUWunDbKulKC0KzRNW8ksY3miksGtGO1dFvmJCPGKrtlnAnJneFdqa2GrqEdP0Vnh71jDL9KrNzufLKlEjNAmFJLNZeSKqJlQd8fUBtDShFcO8YSLu5bStr7R7Tj2NK6fXhEod8-Lp62O-ie2H_NF-DNAbhOOcT_vtBSKMr4HYAljuU</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Shabala, Lana</creator><creator>Zhang, Jingyi</creator><creator>Pottosin, Igor</creator><creator>Bose, Jayakumar</creator><creator>Zhu, Min</creator><creator>Fuglsang, Anja Thoe</creator><creator>Velarde-Buendia, Ana</creator><creator>Massart, Amandine</creator><creator>Hill, Camilla Beate</creator><creator>Roessner, Ute</creator><creator>Bacic, Antony</creator><creator>Wu, Honghong</creator><creator>Azzarello, Elisa</creator><creator>Pandolfi, Camilla</creator><creator>Zhou, Meixue</creator><creator>Poschenrieder, Charlotte</creator><creator>Mancuso, Stefano</creator><creator>Shabala, Sergey</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6629-0280</orcidid><orcidid>https://orcid.org/0000-0002-8686-8761</orcidid><orcidid>https://orcid.org/0000-0003-1153-8394</orcidid><orcidid>https://orcid.org/0000-0001-7483-8605</orcidid><orcidid>https://orcid.org/0000-0002-3818-0874</orcidid><orcidid>https://orcid.org/0000-0003-1752-3986</orcidid><orcidid>https://orcid.org/0000-0002-6482-2615</orcidid><orcidid>https://orcid.org/0000-0002-6754-5553</orcidid><orcidid>https://orcid.org/0000-0002-5360-8496</orcidid><orcidid>https://orcid.org/0000-0003-3009-7854</orcidid></search><sort><creationdate>20161201</creationdate><title>Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress</title><author>Shabala, Lana ; Zhang, Jingyi ; Pottosin, Igor ; Bose, Jayakumar ; Zhu, Min ; Fuglsang, Anja Thoe ; Velarde-Buendia, Ana ; Massart, Amandine ; Hill, Camilla Beate ; Roessner, Ute ; Bacic, Antony ; Wu, Honghong ; Azzarello, Elisa ; Pandolfi, Camilla ; Zhou, Meixue ; Poschenrieder, Charlotte ; Mancuso, Stefano ; Shabala, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acclimatization - drug effects</topic><topic>Allantoin - pharmacology</topic><topic>Cations - metabolism</topic><topic>Hordeum - drug effects</topic><topic>Hordeum - enzymology</topic><topic>Hordeum - physiology</topic><topic>MEMBRANES, TRANSPORT, AND BIOENERGETICS</topic><topic>Metabolome - drug effects</topic><topic>Metabolomics</topic><topic>Models, Biological</topic><topic>Organ Specificity - drug effects</topic><topic>Plant Epidermis - cytology</topic><topic>Plant Epidermis - drug effects</topic><topic>Plant Epidermis - metabolism</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - physiology</topic><topic>Potassium - metabolism</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Salinity</topic><topic>Sodium - metabolism</topic><topic>Sodium Chloride - pharmacology</topic><topic>Stress, Physiological - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabala, Lana</creatorcontrib><creatorcontrib>Zhang, Jingyi</creatorcontrib><creatorcontrib>Pottosin, Igor</creatorcontrib><creatorcontrib>Bose, Jayakumar</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Fuglsang, Anja Thoe</creatorcontrib><creatorcontrib>Velarde-Buendia, Ana</creatorcontrib><creatorcontrib>Massart, Amandine</creatorcontrib><creatorcontrib>Hill, Camilla Beate</creatorcontrib><creatorcontrib>Roessner, Ute</creatorcontrib><creatorcontrib>Bacic, Antony</creatorcontrib><creatorcontrib>Wu, Honghong</creatorcontrib><creatorcontrib>Azzarello, Elisa</creatorcontrib><creatorcontrib>Pandolfi, Camilla</creatorcontrib><creatorcontrib>Zhou, Meixue</creatorcontrib><creatorcontrib>Poschenrieder, Charlotte</creatorcontrib><creatorcontrib>Mancuso, Stefano</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shabala, Lana</au><au>Zhang, Jingyi</au><au>Pottosin, Igor</au><au>Bose, Jayakumar</au><au>Zhu, Min</au><au>Fuglsang, Anja Thoe</au><au>Velarde-Buendia, Ana</au><au>Massart, Amandine</au><au>Hill, Camilla Beate</au><au>Roessner, Ute</au><au>Bacic, Antony</au><au>Wu, Honghong</au><au>Azzarello, Elisa</au><au>Pandolfi, Camilla</au><au>Zhou, Meixue</au><au>Poschenrieder, Charlotte</au><au>Mancuso, Stefano</au><au>Shabala, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>172</volume><issue>4</issue><spage>2445</spage><epage>2458</epage><pages>2445-2458</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>27770060</pmid><doi>10.1104/pp.16.01347</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6629-0280</orcidid><orcidid>https://orcid.org/0000-0002-8686-8761</orcidid><orcidid>https://orcid.org/0000-0003-1153-8394</orcidid><orcidid>https://orcid.org/0000-0001-7483-8605</orcidid><orcidid>https://orcid.org/0000-0002-3818-0874</orcidid><orcidid>https://orcid.org/0000-0003-1752-3986</orcidid><orcidid>https://orcid.org/0000-0002-6482-2615</orcidid><orcidid>https://orcid.org/0000-0002-6754-5553</orcidid><orcidid>https://orcid.org/0000-0002-5360-8496</orcidid><orcidid>https://orcid.org/0000-0003-3009-7854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2016-12, Vol.172 (4), p.2445-2458
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_1835517085
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online
subjects Acclimatization - drug effects
Allantoin - pharmacology
Cations - metabolism
Hordeum - drug effects
Hordeum - enzymology
Hordeum - physiology
MEMBRANES, TRANSPORT, AND BIOENERGETICS
Metabolome - drug effects
Metabolomics
Models, Biological
Organ Specificity - drug effects
Plant Epidermis - cytology
Plant Epidermis - drug effects
Plant Epidermis - metabolism
Plant Roots - drug effects
Plant Roots - enzymology
Plant Roots - growth & development
Plant Roots - physiology
Potassium - metabolism
Proton-Translocating ATPases - metabolism
Reactive Oxygen Species - metabolism
Salinity
Sodium - metabolism
Sodium Chloride - pharmacology
Stress, Physiological - drug effects
title Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-Type-Specific%20H%E2%81%BA-ATPase%20Activity%20in%20Root%20Tissues%20Enables%20K%E2%81%BA%20Retention%20and%20Mediates%20Acclimation%20of%20Barley%20(Hordeum%20vulgare)%20to%20Salinity%20Stress&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Shabala,%20Lana&rft.date=2016-12-01&rft.volume=172&rft.issue=4&rft.spage=2445&rft.epage=2458&rft.pages=2445-2458&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.01347&rft_dat=%3Cjstor_proqu%3E24854712%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835517085&rft_id=info:pmid/27770060&rft_jstor_id=24854712&rfr_iscdi=true