Loading…
Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress
While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferri...
Saved in:
Published in: | Plant physiology (Bethesda) 2016-12, Vol.172 (4), p.2445-2458 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3 |
---|---|
cites | |
container_end_page | 2458 |
container_issue | 4 |
container_start_page | 2445 |
container_title | Plant physiology (Bethesda) |
container_volume | 172 |
creator | Shabala, Lana Zhang, Jingyi Pottosin, Igor Bose, Jayakumar Zhu, Min Fuglsang, Anja Thoe Velarde-Buendia, Ana Massart, Amandine Hill, Camilla Beate Roessner, Ute Bacic, Antony Wu, Honghong Azzarello, Elisa Pandolfi, Camilla Zhou, Meixue Poschenrieder, Charlotte Mancuso, Stefano Shabala, Sergey |
description | While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed. |
doi_str_mv | 10.1104/pp.16.01347 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835517085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24854712</jstor_id><sourcerecordid>24854712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3</originalsourceid><addsrcrecordid>eNpFkc1uEzEUhS1ERdPCijXIyyI0wb9jzzJEhaAWgZqwHjmea-RqMh5sT6UseYk-DI_Dk9RtSlmdK51P9-qci9BrSuaUEvFhHOe0nhPKhXqGZlRyVjEp9HM0I6TMROvmGJ2kdE1Igah4gY6ZUoqQmszQ7RL6vtrsR6jWI1jvvMWrv7__VIvNd5MAL2z2Nz7vsR_wVQgZb3xKEyR8PphtX_SiwPgKMgzZhwGbocNfofMmF29hbe935sEIDn80sYc9PluF2MG0wzdT_9NEeIdzwGvT--H-zjpHSOklOnKmT_DqUU_Rj0_nm-Wquvz2-ctycVlZQUWunDbKulKC0KzRNW8ksY3miksGtGO1dFvmJCPGKrtlnAnJneFdqa2GrqEdP0Vnh71jDL9KrNzufLKlEjNAmFJLNZeSKqJlQd8fUBtDShFcO8YSLu5bStr7R7Tj2NK6fXhEod8-Lp62O-ie2H_NF-DNAbhOOcT_vtBSKMr4HYAljuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835517085</pqid></control><display><type>article</type><title>Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Shabala, Lana ; Zhang, Jingyi ; Pottosin, Igor ; Bose, Jayakumar ; Zhu, Min ; Fuglsang, Anja Thoe ; Velarde-Buendia, Ana ; Massart, Amandine ; Hill, Camilla Beate ; Roessner, Ute ; Bacic, Antony ; Wu, Honghong ; Azzarello, Elisa ; Pandolfi, Camilla ; Zhou, Meixue ; Poschenrieder, Charlotte ; Mancuso, Stefano ; Shabala, Sergey</creator><creatorcontrib>Shabala, Lana ; Zhang, Jingyi ; Pottosin, Igor ; Bose, Jayakumar ; Zhu, Min ; Fuglsang, Anja Thoe ; Velarde-Buendia, Ana ; Massart, Amandine ; Hill, Camilla Beate ; Roessner, Ute ; Bacic, Antony ; Wu, Honghong ; Azzarello, Elisa ; Pandolfi, Camilla ; Zhou, Meixue ; Poschenrieder, Charlotte ; Mancuso, Stefano ; Shabala, Sergey</creatorcontrib><description>While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.01347</identifier><identifier>PMID: 27770060</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Acclimatization - drug effects ; Allantoin - pharmacology ; Cations - metabolism ; Hordeum - drug effects ; Hordeum - enzymology ; Hordeum - physiology ; MEMBRANES, TRANSPORT, AND BIOENERGETICS ; Metabolome - drug effects ; Metabolomics ; Models, Biological ; Organ Specificity - drug effects ; Plant Epidermis - cytology ; Plant Epidermis - drug effects ; Plant Epidermis - metabolism ; Plant Roots - drug effects ; Plant Roots - enzymology ; Plant Roots - growth & development ; Plant Roots - physiology ; Potassium - metabolism ; Proton-Translocating ATPases - metabolism ; Reactive Oxygen Species - metabolism ; Salinity ; Sodium - metabolism ; Sodium Chloride - pharmacology ; Stress, Physiological - drug effects</subject><ispartof>Plant physiology (Bethesda), 2016-12, Vol.172 (4), p.2445-2458</ispartof><rights>Copyright © 2016 American Society of Plant Biologists</rights><rights>2016 American Society of Plant Biologists. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3</citedby><orcidid>0000-0001-6629-0280 ; 0000-0002-8686-8761 ; 0000-0003-1153-8394 ; 0000-0001-7483-8605 ; 0000-0002-3818-0874 ; 0000-0003-1752-3986 ; 0000-0002-6482-2615 ; 0000-0002-6754-5553 ; 0000-0002-5360-8496 ; 0000-0003-3009-7854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24854712$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24854712$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27770060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shabala, Lana</creatorcontrib><creatorcontrib>Zhang, Jingyi</creatorcontrib><creatorcontrib>Pottosin, Igor</creatorcontrib><creatorcontrib>Bose, Jayakumar</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Fuglsang, Anja Thoe</creatorcontrib><creatorcontrib>Velarde-Buendia, Ana</creatorcontrib><creatorcontrib>Massart, Amandine</creatorcontrib><creatorcontrib>Hill, Camilla Beate</creatorcontrib><creatorcontrib>Roessner, Ute</creatorcontrib><creatorcontrib>Bacic, Antony</creatorcontrib><creatorcontrib>Wu, Honghong</creatorcontrib><creatorcontrib>Azzarello, Elisa</creatorcontrib><creatorcontrib>Pandolfi, Camilla</creatorcontrib><creatorcontrib>Zhou, Meixue</creatorcontrib><creatorcontrib>Poschenrieder, Charlotte</creatorcontrib><creatorcontrib>Mancuso, Stefano</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><title>Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.</description><subject>Acclimatization - drug effects</subject><subject>Allantoin - pharmacology</subject><subject>Cations - metabolism</subject><subject>Hordeum - drug effects</subject><subject>Hordeum - enzymology</subject><subject>Hordeum - physiology</subject><subject>MEMBRANES, TRANSPORT, AND BIOENERGETICS</subject><subject>Metabolome - drug effects</subject><subject>Metabolomics</subject><subject>Models, Biological</subject><subject>Organ Specificity - drug effects</subject><subject>Plant Epidermis - cytology</subject><subject>Plant Epidermis - drug effects</subject><subject>Plant Epidermis - metabolism</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - growth & development</subject><subject>Plant Roots - physiology</subject><subject>Potassium - metabolism</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Salinity</subject><subject>Sodium - metabolism</subject><subject>Sodium Chloride - pharmacology</subject><subject>Stress, Physiological - drug effects</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkc1uEzEUhS1ERdPCijXIyyI0wb9jzzJEhaAWgZqwHjmea-RqMh5sT6UseYk-DI_Dk9RtSlmdK51P9-qci9BrSuaUEvFhHOe0nhPKhXqGZlRyVjEp9HM0I6TMROvmGJ2kdE1Igah4gY6ZUoqQmszQ7RL6vtrsR6jWI1jvvMWrv7__VIvNd5MAL2z2Nz7vsR_wVQgZb3xKEyR8PphtX_SiwPgKMgzZhwGbocNfofMmF29hbe935sEIDn80sYc9PluF2MG0wzdT_9NEeIdzwGvT--H-zjpHSOklOnKmT_DqUU_Rj0_nm-Wquvz2-ctycVlZQUWunDbKulKC0KzRNW8ksY3miksGtGO1dFvmJCPGKrtlnAnJneFdqa2GrqEdP0Vnh71jDL9KrNzufLKlEjNAmFJLNZeSKqJlQd8fUBtDShFcO8YSLu5bStr7R7Tj2NK6fXhEod8-Lp62O-ie2H_NF-DNAbhOOcT_vtBSKMr4HYAljuU</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Shabala, Lana</creator><creator>Zhang, Jingyi</creator><creator>Pottosin, Igor</creator><creator>Bose, Jayakumar</creator><creator>Zhu, Min</creator><creator>Fuglsang, Anja Thoe</creator><creator>Velarde-Buendia, Ana</creator><creator>Massart, Amandine</creator><creator>Hill, Camilla Beate</creator><creator>Roessner, Ute</creator><creator>Bacic, Antony</creator><creator>Wu, Honghong</creator><creator>Azzarello, Elisa</creator><creator>Pandolfi, Camilla</creator><creator>Zhou, Meixue</creator><creator>Poschenrieder, Charlotte</creator><creator>Mancuso, Stefano</creator><creator>Shabala, Sergey</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6629-0280</orcidid><orcidid>https://orcid.org/0000-0002-8686-8761</orcidid><orcidid>https://orcid.org/0000-0003-1153-8394</orcidid><orcidid>https://orcid.org/0000-0001-7483-8605</orcidid><orcidid>https://orcid.org/0000-0002-3818-0874</orcidid><orcidid>https://orcid.org/0000-0003-1752-3986</orcidid><orcidid>https://orcid.org/0000-0002-6482-2615</orcidid><orcidid>https://orcid.org/0000-0002-6754-5553</orcidid><orcidid>https://orcid.org/0000-0002-5360-8496</orcidid><orcidid>https://orcid.org/0000-0003-3009-7854</orcidid></search><sort><creationdate>20161201</creationdate><title>Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress</title><author>Shabala, Lana ; Zhang, Jingyi ; Pottosin, Igor ; Bose, Jayakumar ; Zhu, Min ; Fuglsang, Anja Thoe ; Velarde-Buendia, Ana ; Massart, Amandine ; Hill, Camilla Beate ; Roessner, Ute ; Bacic, Antony ; Wu, Honghong ; Azzarello, Elisa ; Pandolfi, Camilla ; Zhou, Meixue ; Poschenrieder, Charlotte ; Mancuso, Stefano ; Shabala, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acclimatization - drug effects</topic><topic>Allantoin - pharmacology</topic><topic>Cations - metabolism</topic><topic>Hordeum - drug effects</topic><topic>Hordeum - enzymology</topic><topic>Hordeum - physiology</topic><topic>MEMBRANES, TRANSPORT, AND BIOENERGETICS</topic><topic>Metabolome - drug effects</topic><topic>Metabolomics</topic><topic>Models, Biological</topic><topic>Organ Specificity - drug effects</topic><topic>Plant Epidermis - cytology</topic><topic>Plant Epidermis - drug effects</topic><topic>Plant Epidermis - metabolism</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - growth & development</topic><topic>Plant Roots - physiology</topic><topic>Potassium - metabolism</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Salinity</topic><topic>Sodium - metabolism</topic><topic>Sodium Chloride - pharmacology</topic><topic>Stress, Physiological - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabala, Lana</creatorcontrib><creatorcontrib>Zhang, Jingyi</creatorcontrib><creatorcontrib>Pottosin, Igor</creatorcontrib><creatorcontrib>Bose, Jayakumar</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Fuglsang, Anja Thoe</creatorcontrib><creatorcontrib>Velarde-Buendia, Ana</creatorcontrib><creatorcontrib>Massart, Amandine</creatorcontrib><creatorcontrib>Hill, Camilla Beate</creatorcontrib><creatorcontrib>Roessner, Ute</creatorcontrib><creatorcontrib>Bacic, Antony</creatorcontrib><creatorcontrib>Wu, Honghong</creatorcontrib><creatorcontrib>Azzarello, Elisa</creatorcontrib><creatorcontrib>Pandolfi, Camilla</creatorcontrib><creatorcontrib>Zhou, Meixue</creatorcontrib><creatorcontrib>Poschenrieder, Charlotte</creatorcontrib><creatorcontrib>Mancuso, Stefano</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shabala, Lana</au><au>Zhang, Jingyi</au><au>Pottosin, Igor</au><au>Bose, Jayakumar</au><au>Zhu, Min</au><au>Fuglsang, Anja Thoe</au><au>Velarde-Buendia, Ana</au><au>Massart, Amandine</au><au>Hill, Camilla Beate</au><au>Roessner, Ute</au><au>Bacic, Antony</au><au>Wu, Honghong</au><au>Azzarello, Elisa</au><au>Pandolfi, Camilla</au><au>Zhou, Meixue</au><au>Poschenrieder, Charlotte</au><au>Mancuso, Stefano</au><au>Shabala, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>172</volume><issue>4</issue><spage>2445</spage><epage>2458</epage><pages>2445-2458</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>27770060</pmid><doi>10.1104/pp.16.01347</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6629-0280</orcidid><orcidid>https://orcid.org/0000-0002-8686-8761</orcidid><orcidid>https://orcid.org/0000-0003-1153-8394</orcidid><orcidid>https://orcid.org/0000-0001-7483-8605</orcidid><orcidid>https://orcid.org/0000-0002-3818-0874</orcidid><orcidid>https://orcid.org/0000-0003-1752-3986</orcidid><orcidid>https://orcid.org/0000-0002-6482-2615</orcidid><orcidid>https://orcid.org/0000-0002-6754-5553</orcidid><orcidid>https://orcid.org/0000-0002-5360-8496</orcidid><orcidid>https://orcid.org/0000-0003-3009-7854</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2016-12, Vol.172 (4), p.2445-2458 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835517085 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online |
subjects | Acclimatization - drug effects Allantoin - pharmacology Cations - metabolism Hordeum - drug effects Hordeum - enzymology Hordeum - physiology MEMBRANES, TRANSPORT, AND BIOENERGETICS Metabolome - drug effects Metabolomics Models, Biological Organ Specificity - drug effects Plant Epidermis - cytology Plant Epidermis - drug effects Plant Epidermis - metabolism Plant Roots - drug effects Plant Roots - enzymology Plant Roots - growth & development Plant Roots - physiology Potassium - metabolism Proton-Translocating ATPases - metabolism Reactive Oxygen Species - metabolism Salinity Sodium - metabolism Sodium Chloride - pharmacology Stress, Physiological - drug effects |
title | Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-Type-Specific%20H%E2%81%BA-ATPase%20Activity%20in%20Root%20Tissues%20Enables%20K%E2%81%BA%20Retention%20and%20Mediates%20Acclimation%20of%20Barley%20(Hordeum%20vulgare)%20to%20Salinity%20Stress&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Shabala,%20Lana&rft.date=2016-12-01&rft.volume=172&rft.issue=4&rft.spage=2445&rft.epage=2458&rft.pages=2445-2458&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.01347&rft_dat=%3Cjstor_proqu%3E24854712%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-f8a7cf1044829863950c9837352e1d265fb2f520ac7cb232453fa3d1106ed91d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835517085&rft_id=info:pmid/27770060&rft_jstor_id=24854712&rfr_iscdi=true |