Loading…

Characterization and enzymatic hydrolysis of hydrothermally treated β-1,3–1,6-glucan from Aureobasidium pullulans

The chemical structure of hydrothermally treated β-1,3–1,6-glucan from Aureobasidium pullulans was characterized using techniques such as gas chromatography/mass spectrometry (GC/MS) and nuclear magnetic resonance (NMR). The chemical shifts of anomeric carbons observed in the 13 C-NMR spectra sugges...

Full description

Saved in:
Bibliographic Details
Published in:World journal of microbiology & biotechnology 2016-12, Vol.32 (12), p.206-206, Article 206
Main Authors: Hirabayashi, Katsuki, Kondo, Nobuhiro, Hayashi, Sachio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The chemical structure of hydrothermally treated β-1,3–1,6-glucan from Aureobasidium pullulans was characterized using techniques such as gas chromatography/mass spectrometry (GC/MS) and nuclear magnetic resonance (NMR). The chemical shifts of anomeric carbons observed in the 13 C-NMR spectra suggested the presence of single flexible chains of polysaccharide in the sample. β-1,3–1,6-Glucan from A. pullulans became water-soluble, with an average molecular weight of 128,000 Da after hydrothermal treatment, and the solubility in water was approximately 10% (w/w). Sample (3% w/v) was completely hydrolyzed to glucose by enzymatic reaction with Lysing enzymes from Trichoderma harzianum . Gentiobiose (Glcβ1 → 6Glc) and glucose were released as products during the reaction, and the maximum yield of gentiobiose was approximately 70% (w/w). The molar ratio of gentiobiose to glucose after 1 h reaction suggested that the sample is likely highly branched. Sample (3% w/v) was also hydrolyzed to glucose by Uskizyme from Trichoderma sp., indicating that it is very sensitive to enzymatic hydrolysis.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-016-2167-4