Loading…
Fast multipole methods for particle dynamics
The growth of simulations of particle systems has been aided by advances in computer speed and algorithms. The adoption of algorithms to solve N-body simulation problems has been less rapid due to the fact that such scaling was only competitive for relatively large N. Our work seeks to find algorith...
Saved in:
Published in: | Molecular simulation 2006-01, Vol.32 (10-11), p.775-790 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The growth of simulations of particle systems has been aided by advances in computer speed and algorithms. The adoption of
algorithms to solve N-body simulation problems has been less rapid due to the fact that such scaling was only competitive for relatively large N. Our work seeks to find algorithmic modifications and practical implementations for intermediate values of N in typical use for molecular simulations. This article reviews fast multipole techniques for calculation of electrostatic interactions in molecular systems. The basic mathematics behind fast summations applied to long ranged forces is presented along with advanced techniques for accelerating the solution, including our most recent developments. The computational efficiency of the new methods facilitates both simulations of large systems as well as longer and therefore more realistic simulations of smaller systems. |
---|---|
ISSN: | 0892-7022 1029-0435 |
DOI: | 10.1080/08927020600991161 |