Loading…

Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation

The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diag...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2016-06, Vol.93 (23), Article 235113
Main Authors: Maggio, Emanuele, Kresse, Georg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23
cites cdi_FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23
container_end_page
container_issue 23
container_start_page
container_title Physical review. B
container_volume 93
creator Maggio, Emanuele
Kresse, Georg
description The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Moller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.
doi_str_mv 10.1103/PhysRevB.93.235113
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835553429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835553429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23</originalsourceid><addsrcrecordid>eNo9kFtPAjEQhRujiUT5Az710ZfFXrbL1jcheElINF6em253CphC17ZL4N9bQX2YzGTy5cyZg9AVJSNKCb95We7jK2wnI8lHjAtK-QkasLKShZSVPP2fBTlHwxg_CSG0InJM5AB1Ux8COJ1WfoNhA2Gxx9YHnJaAl37tF3nn-4jBgUkhMwsdb_Fsp03CE8hU8aZdBwkCjt71Bxm9aXNh3XXB71ZrnQDDVrv-cOQSnVntIgx_-wX6uJ-9Tx-L-fPD0_RuXhjOylSMhSyllTY7ZWDrhlVGcyu5pZKyRlaNYa20FQjajFvBWd3UxnDemtZyS4DxC3R91M0mvnqISa1X0YBz-vCQojUXQvCSyYyyI2qCjzGAVV3ItsNeUaJ-ElZ_CSvJ1TFh_g3pL3MV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835553429</pqid></control><display><type>article</type><title>Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Maggio, Emanuele ; Kresse, Georg</creator><creatorcontrib>Maggio, Emanuele ; Kresse, Georg</creatorcontrib><description>The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Moller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.235113</identifier><language>eng</language><subject>Approximation ; BSE ; Condensed matter ; Correlation ; Electron gas ; Exchange ; Mathematical analysis ; Polarization</subject><ispartof>Physical review. B, 2016-06, Vol.93 (23), Article 235113</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23</citedby><cites>FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Maggio, Emanuele</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><title>Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation</title><title>Physical review. B</title><description>The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Moller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.</description><subject>Approximation</subject><subject>BSE</subject><subject>Condensed matter</subject><subject>Correlation</subject><subject>Electron gas</subject><subject>Exchange</subject><subject>Mathematical analysis</subject><subject>Polarization</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kFtPAjEQhRujiUT5Az710ZfFXrbL1jcheElINF6em253CphC17ZL4N9bQX2YzGTy5cyZg9AVJSNKCb95We7jK2wnI8lHjAtK-QkasLKShZSVPP2fBTlHwxg_CSG0InJM5AB1Ux8COJ1WfoNhA2Gxx9YHnJaAl37tF3nn-4jBgUkhMwsdb_Fsp03CE8hU8aZdBwkCjt71Bxm9aXNh3XXB71ZrnQDDVrv-cOQSnVntIgx_-wX6uJ-9Tx-L-fPD0_RuXhjOylSMhSyllTY7ZWDrhlVGcyu5pZKyRlaNYa20FQjajFvBWd3UxnDemtZyS4DxC3R91M0mvnqISa1X0YBz-vCQojUXQvCSyYyyI2qCjzGAVV3ItsNeUaJ-ElZ_CSvJ1TFh_g3pL3MV</recordid><startdate>20160607</startdate><enddate>20160607</enddate><creator>Maggio, Emanuele</creator><creator>Kresse, Georg</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160607</creationdate><title>Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation</title><author>Maggio, Emanuele ; Kresse, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>BSE</topic><topic>Condensed matter</topic><topic>Correlation</topic><topic>Electron gas</topic><topic>Exchange</topic><topic>Mathematical analysis</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maggio, Emanuele</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maggio, Emanuele</au><au>Kresse, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation</atitle><jtitle>Physical review. B</jtitle><date>2016-06-07</date><risdate>2016</risdate><volume>93</volume><issue>23</issue><artnum>235113</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Moller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.</abstract><doi>10.1103/PhysRevB.93.235113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-06, Vol.93 (23), Article 235113
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_miscellaneous_1835553429
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Approximation
BSE
Condensed matter
Correlation
Electron gas
Exchange
Mathematical analysis
Polarization
title Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20energy%20for%20the%20homogeneous%20electron%20gas:%20Exact%20Bethe-Salpeter%20solution%20and%20an%20approximate%20evaluation&rft.jtitle=Physical%20review.%20B&rft.au=Maggio,%20Emanuele&rft.date=2016-06-07&rft.volume=93&rft.issue=23&rft.artnum=235113&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.235113&rft_dat=%3Cproquest_cross%3E1835553429%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835553429&rft_id=info:pmid/&rfr_iscdi=true