Loading…
Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation
The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diag...
Saved in:
Published in: | Physical review. B 2016-06, Vol.93 (23), Article 235113 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23 |
container_end_page | |
container_issue | 23 |
container_start_page | |
container_title | Physical review. B |
container_volume | 93 |
creator | Maggio, Emanuele Kresse, Georg |
description | The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Moller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel. |
doi_str_mv | 10.1103/PhysRevB.93.235113 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835553429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835553429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23</originalsourceid><addsrcrecordid>eNo9kFtPAjEQhRujiUT5Az710ZfFXrbL1jcheElINF6em253CphC17ZL4N9bQX2YzGTy5cyZg9AVJSNKCb95We7jK2wnI8lHjAtK-QkasLKShZSVPP2fBTlHwxg_CSG0InJM5AB1Ux8COJ1WfoNhA2Gxx9YHnJaAl37tF3nn-4jBgUkhMwsdb_Fsp03CE8hU8aZdBwkCjt71Bxm9aXNh3XXB71ZrnQDDVrv-cOQSnVntIgx_-wX6uJ-9Tx-L-fPD0_RuXhjOylSMhSyllTY7ZWDrhlVGcyu5pZKyRlaNYa20FQjajFvBWd3UxnDemtZyS4DxC3R91M0mvnqISa1X0YBz-vCQojUXQvCSyYyyI2qCjzGAVV3ItsNeUaJ-ElZ_CSvJ1TFh_g3pL3MV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835553429</pqid></control><display><type>article</type><title>Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Maggio, Emanuele ; Kresse, Georg</creator><creatorcontrib>Maggio, Emanuele ; Kresse, Georg</creatorcontrib><description>The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Moller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.235113</identifier><language>eng</language><subject>Approximation ; BSE ; Condensed matter ; Correlation ; Electron gas ; Exchange ; Mathematical analysis ; Polarization</subject><ispartof>Physical review. B, 2016-06, Vol.93 (23), Article 235113</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23</citedby><cites>FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Maggio, Emanuele</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><title>Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation</title><title>Physical review. B</title><description>The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Moller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.</description><subject>Approximation</subject><subject>BSE</subject><subject>Condensed matter</subject><subject>Correlation</subject><subject>Electron gas</subject><subject>Exchange</subject><subject>Mathematical analysis</subject><subject>Polarization</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kFtPAjEQhRujiUT5Az710ZfFXrbL1jcheElINF6em253CphC17ZL4N9bQX2YzGTy5cyZg9AVJSNKCb95We7jK2wnI8lHjAtK-QkasLKShZSVPP2fBTlHwxg_CSG0InJM5AB1Ux8COJ1WfoNhA2Gxx9YHnJaAl37tF3nn-4jBgUkhMwsdb_Fsp03CE8hU8aZdBwkCjt71Bxm9aXNh3XXB71ZrnQDDVrv-cOQSnVntIgx_-wX6uJ-9Tx-L-fPD0_RuXhjOylSMhSyllTY7ZWDrhlVGcyu5pZKyRlaNYa20FQjajFvBWd3UxnDemtZyS4DxC3R91M0mvnqISa1X0YBz-vCQojUXQvCSyYyyI2qCjzGAVV3ItsNeUaJ-ElZ_CSvJ1TFh_g3pL3MV</recordid><startdate>20160607</startdate><enddate>20160607</enddate><creator>Maggio, Emanuele</creator><creator>Kresse, Georg</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160607</creationdate><title>Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation</title><author>Maggio, Emanuele ; Kresse, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>BSE</topic><topic>Condensed matter</topic><topic>Correlation</topic><topic>Electron gas</topic><topic>Exchange</topic><topic>Mathematical analysis</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maggio, Emanuele</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maggio, Emanuele</au><au>Kresse, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation</atitle><jtitle>Physical review. B</jtitle><date>2016-06-07</date><risdate>2016</risdate><volume>93</volume><issue>23</issue><artnum>235113</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Moller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.</abstract><doi>10.1103/PhysRevB.93.235113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-06, Vol.93 (23), Article 235113 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835553429 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Approximation BSE Condensed matter Correlation Electron gas Exchange Mathematical analysis Polarization |
title | Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20energy%20for%20the%20homogeneous%20electron%20gas:%20Exact%20Bethe-Salpeter%20solution%20and%20an%20approximate%20evaluation&rft.jtitle=Physical%20review.%20B&rft.au=Maggio,%20Emanuele&rft.date=2016-06-07&rft.volume=93&rft.issue=23&rft.artnum=235113&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.235113&rft_dat=%3Cproquest_cross%3E1835553429%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-75949f9f0162ef8b26ca3f93f1912b96bc2d9f6e51b7d5328b8cc33dcdf3f0e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835553429&rft_id=info:pmid/&rfr_iscdi=true |