Loading…
Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells
Transparent conducting electrodes (TCEs) with multi‐length scaled structure are promising candidates as a potential replacement for indium tin oxide (ITO). In this work, multi‐length scaled silver nanowire (AgNW) grids are demonstrated as TCEs for organic solar cells. The multi‐length scale silver n...
Saved in:
Published in: | Advanced functional materials 2016-07, Vol.26 (27), p.4822-4828 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transparent conducting electrodes (TCEs) with multi‐length scaled structure are promising candidates as a potential replacement for indium tin oxide (ITO). In this work, multi‐length scaled silver nanowire (AgNW) grids are demonstrated as TCEs for organic solar cells. The multi‐length scale silver nanowire grids are prepared by top‐down patterning using a neutral vapor etching process. Patterning AgNW film into multi‐length scale grid structures could improve the optical transmittance and enhance the use of incident photons. Based on these multi‐length scale AgNW grids, inverted bulk heterojunction polymer solar cells with power conversion efficiency up to 9.02% are fabricated, which are higher than that based on the original AgNW films and comparable to that based on ITO.
Multi‐length scaled silver nanowire (AgNW) grids are prepared as transparent conducting electrodes through a neutral vapor etching process. Organic solar cells with power conversion efficiency up to 9.02% are fabricated based on the multi‐length scaled AgNW grids, which is higher than that based on original AgNW films and comparable to that based on indium tin oxide. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201601049 |