Loading…

Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression

The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algori...

Full description

Saved in:
Bibliographic Details
Main Authors: Kalmuk, Alexander, Granichin, Oleg, Granichina, Olga, Mingyue Ding
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6844
container_issue
container_start_page 6839
container_title
container_volume
creator Kalmuk, Alexander
Granichin, Oleg
Granichina, Olga
Mingyue Ding
description The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algorithm is used to detect abrupt changes in the obtained data using an adaptive threshold. The estimation of this adaptive threshold is presented. This approach is then applied to demonstrate the slowdown detection of a small autonomous vehicle.
doi_str_mv 10.1109/ACC.2016.7526749
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835561264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7526749</ieee_id><sourcerecordid>1835561264</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-dfee5d23416bd2679cc0d4f3baee85a0e61402a2f424421cb1372b19a6c691ab3</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhA0SEm1hR2LxyJLirzjJWIVPqRILzNEb500xSpxgO0gZ-O9EapluuNPpniPkhrMt56y435XlVjCut1kqdKaKM7LmSmcy17lg52QlZJYnaa75JVmH8MUYLwrNVuT3ASOaaAdHh5ZC7acxUvMJ7oCBWkdhioMb-mEKNMwhYk9bmLpIwUE3BxvoFKw70DBCtNBRaGCM9gcphmh7-O91gxvBQ4_RW0M9HjyGsHhX5KKFLuD1STfk4-nxvXxJ9m_Pr-Vun1jB8pg0LWLaCKm4rpsFrzCGNaqVNSDmKTDUXDEBolVCKcFNzWUmal6ANrrgUMsNuTv2jn74npZtVW-Dwa4DhwtaxXOZppoLrZbo7TFqEbEa_ULh5-r0qvwDKZBu-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1835561264</pqid></control><display><type>conference_proceeding</type><title>Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression</title><source>IEEE Xplore All Conference Series</source><creator>Kalmuk, Alexander ; Granichin, Oleg ; Granichina, Olga ; Mingyue Ding</creator><creatorcontrib>Kalmuk, Alexander ; Granichin, Oleg ; Granichina, Olga ; Mingyue Ding</creatorcontrib><description>The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algorithm is used to detect abrupt changes in the obtained data using an adaptive threshold. The estimation of this adaptive threshold is presented. This approach is then applied to demonstrate the slowdown detection of a small autonomous vehicle.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1467386820</identifier><identifier>EISBN: 9781467386807</identifier><identifier>EISBN: 9781467386821</identifier><identifier>EISBN: 1467386804</identifier><identifier>DOI: 10.1109/ACC.2016.7526749</identifier><language>eng</language><publisher>American Automatic Control Council (AACC)</publisher><subject>Accelerometers ; Adaptation models ; Adaptive algorithms ; Adaptive estimation ; Conferences ; Derivatives ; Electronics ; Estimation ; Faults ; Filtering algorithms ; Gaussian ; Probability density function ; Regression ; Thresholds ; Vehicles</subject><ispartof>2016 American Control Conference (ACC), 2016, p.6839-6844</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7526749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7526749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalmuk, Alexander</creatorcontrib><creatorcontrib>Granichin, Oleg</creatorcontrib><creatorcontrib>Granichina, Olga</creatorcontrib><creatorcontrib>Mingyue Ding</creatorcontrib><title>Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression</title><title>2016 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algorithm is used to detect abrupt changes in the obtained data using an adaptive threshold. The estimation of this adaptive threshold is presented. This approach is then applied to demonstrate the slowdown detection of a small autonomous vehicle.</description><subject>Accelerometers</subject><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Adaptive estimation</subject><subject>Conferences</subject><subject>Derivatives</subject><subject>Electronics</subject><subject>Estimation</subject><subject>Faults</subject><subject>Filtering algorithms</subject><subject>Gaussian</subject><subject>Probability density function</subject><subject>Regression</subject><subject>Thresholds</subject><subject>Vehicles</subject><issn>2378-5861</issn><isbn>1467386820</isbn><isbn>9781467386807</isbn><isbn>9781467386821</isbn><isbn>1467386804</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD1PwzAYhA0SEm1hR2LxyJLirzjJWIVPqRILzNEb500xSpxgO0gZ-O9EapluuNPpniPkhrMt56y435XlVjCut1kqdKaKM7LmSmcy17lg52QlZJYnaa75JVmH8MUYLwrNVuT3ASOaaAdHh5ZC7acxUvMJ7oCBWkdhioMb-mEKNMwhYk9bmLpIwUE3BxvoFKw70DBCtNBRaGCM9gcphmh7-O91gxvBQ4_RW0M9HjyGsHhX5KKFLuD1STfk4-nxvXxJ9m_Pr-Vun1jB8pg0LWLaCKm4rpsFrzCGNaqVNSDmKTDUXDEBolVCKcFNzWUmal6ANrrgUMsNuTv2jn74npZtVW-Dwa4DhwtaxXOZppoLrZbo7TFqEbEa_ULh5-r0qvwDKZBu-A</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Kalmuk, Alexander</creator><creator>Granichin, Oleg</creator><creator>Granichina, Olga</creator><creator>Mingyue Ding</creator><general>American Automatic Control Council (AACC)</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression</title><author>Kalmuk, Alexander ; Granichin, Oleg ; Granichina, Olga ; Mingyue Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-dfee5d23416bd2679cc0d4f3baee85a0e61402a2f424421cb1372b19a6c691ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accelerometers</topic><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Adaptive estimation</topic><topic>Conferences</topic><topic>Derivatives</topic><topic>Electronics</topic><topic>Estimation</topic><topic>Faults</topic><topic>Filtering algorithms</topic><topic>Gaussian</topic><topic>Probability density function</topic><topic>Regression</topic><topic>Thresholds</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalmuk, Alexander</creatorcontrib><creatorcontrib>Granichin, Oleg</creatorcontrib><creatorcontrib>Granichina, Olga</creatorcontrib><creatorcontrib>Mingyue Ding</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalmuk, Alexander</au><au>Granichin, Oleg</au><au>Granichina, Olga</au><au>Mingyue Ding</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression</atitle><btitle>2016 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2016-07-01</date><risdate>2016</risdate><spage>6839</spage><epage>6844</epage><pages>6839-6844</pages><eissn>2378-5861</eissn><eisbn>1467386820</eisbn><eisbn>9781467386807</eisbn><eisbn>9781467386821</eisbn><eisbn>1467386804</eisbn><abstract>The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algorithm is used to detect abrupt changes in the obtained data using an adaptive threshold. The estimation of this adaptive threshold is presented. This approach is then applied to demonstrate the slowdown detection of a small autonomous vehicle.</abstract><pub>American Automatic Control Council (AACC)</pub><doi>10.1109/ACC.2016.7526749</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2378-5861
ispartof 2016 American Control Conference (ACC), 2016, p.6839-6844
issn 2378-5861
language eng
recordid cdi_proquest_miscellaneous_1835561264
source IEEE Xplore All Conference Series
subjects Accelerometers
Adaptation models
Adaptive algorithms
Adaptive estimation
Conferences
Derivatives
Electronics
Estimation
Faults
Filtering algorithms
Gaussian
Probability density function
Regression
Thresholds
Vehicles
title Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20abrupt%20changes%20in%20autonomous%20system%20fault%20analysis%20using%20spatial%20adaptive%20estimation%20of%20nonparametric%20regression&rft.btitle=2016%20American%20Control%20Conference%20(ACC)&rft.au=Kalmuk,%20Alexander&rft.date=2016-07-01&rft.spage=6839&rft.epage=6844&rft.pages=6839-6844&rft.eissn=2378-5861&rft_id=info:doi/10.1109/ACC.2016.7526749&rft.eisbn=1467386820&rft.eisbn_list=9781467386807&rft.eisbn_list=9781467386821&rft.eisbn_list=1467386804&rft_dat=%3Cproquest_CHZPO%3E1835561264%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-dfee5d23416bd2679cc0d4f3baee85a0e61402a2f424421cb1372b19a6c691ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835561264&rft_id=info:pmid/&rft_ieee_id=7526749&rfr_iscdi=true