Loading…
Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression
The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algori...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6844 |
container_issue | |
container_start_page | 6839 |
container_title | |
container_volume | |
creator | Kalmuk, Alexander Granichin, Oleg Granichina, Olga Mingyue Ding |
description | The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algorithm is used to detect abrupt changes in the obtained data using an adaptive threshold. The estimation of this adaptive threshold is presented. This approach is then applied to demonstrate the slowdown detection of a small autonomous vehicle. |
doi_str_mv | 10.1109/ACC.2016.7526749 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835561264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7526749</ieee_id><sourcerecordid>1835561264</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-dfee5d23416bd2679cc0d4f3baee85a0e61402a2f424421cb1372b19a6c691ab3</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhA0SEm1hR2LxyJLirzjJWIVPqRILzNEb500xSpxgO0gZ-O9EapluuNPpniPkhrMt56y435XlVjCut1kqdKaKM7LmSmcy17lg52QlZJYnaa75JVmH8MUYLwrNVuT3ASOaaAdHh5ZC7acxUvMJ7oCBWkdhioMb-mEKNMwhYk9bmLpIwUE3BxvoFKw70DBCtNBRaGCM9gcphmh7-O91gxvBQ4_RW0M9HjyGsHhX5KKFLuD1STfk4-nxvXxJ9m_Pr-Vun1jB8pg0LWLaCKm4rpsFrzCGNaqVNSDmKTDUXDEBolVCKcFNzWUmal6ANrrgUMsNuTv2jn74npZtVW-Dwa4DhwtaxXOZppoLrZbo7TFqEbEa_ULh5-r0qvwDKZBu-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1835561264</pqid></control><display><type>conference_proceeding</type><title>Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression</title><source>IEEE Xplore All Conference Series</source><creator>Kalmuk, Alexander ; Granichin, Oleg ; Granichina, Olga ; Mingyue Ding</creator><creatorcontrib>Kalmuk, Alexander ; Granichin, Oleg ; Granichina, Olga ; Mingyue Ding</creatorcontrib><description>The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algorithm is used to detect abrupt changes in the obtained data using an adaptive threshold. The estimation of this adaptive threshold is presented. This approach is then applied to demonstrate the slowdown detection of a small autonomous vehicle.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1467386820</identifier><identifier>EISBN: 9781467386807</identifier><identifier>EISBN: 9781467386821</identifier><identifier>EISBN: 1467386804</identifier><identifier>DOI: 10.1109/ACC.2016.7526749</identifier><language>eng</language><publisher>American Automatic Control Council (AACC)</publisher><subject>Accelerometers ; Adaptation models ; Adaptive algorithms ; Adaptive estimation ; Conferences ; Derivatives ; Electronics ; Estimation ; Faults ; Filtering algorithms ; Gaussian ; Probability density function ; Regression ; Thresholds ; Vehicles</subject><ispartof>2016 American Control Conference (ACC), 2016, p.6839-6844</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7526749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7526749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalmuk, Alexander</creatorcontrib><creatorcontrib>Granichin, Oleg</creatorcontrib><creatorcontrib>Granichina, Olga</creatorcontrib><creatorcontrib>Mingyue Ding</creatorcontrib><title>Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression</title><title>2016 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algorithm is used to detect abrupt changes in the obtained data using an adaptive threshold. The estimation of this adaptive threshold is presented. This approach is then applied to demonstrate the slowdown detection of a small autonomous vehicle.</description><subject>Accelerometers</subject><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Adaptive estimation</subject><subject>Conferences</subject><subject>Derivatives</subject><subject>Electronics</subject><subject>Estimation</subject><subject>Faults</subject><subject>Filtering algorithms</subject><subject>Gaussian</subject><subject>Probability density function</subject><subject>Regression</subject><subject>Thresholds</subject><subject>Vehicles</subject><issn>2378-5861</issn><isbn>1467386820</isbn><isbn>9781467386807</isbn><isbn>9781467386821</isbn><isbn>1467386804</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD1PwzAYhA0SEm1hR2LxyJLirzjJWIVPqRILzNEb500xSpxgO0gZ-O9EapluuNPpniPkhrMt56y435XlVjCut1kqdKaKM7LmSmcy17lg52QlZJYnaa75JVmH8MUYLwrNVuT3ASOaaAdHh5ZC7acxUvMJ7oCBWkdhioMb-mEKNMwhYk9bmLpIwUE3BxvoFKw70DBCtNBRaGCM9gcphmh7-O91gxvBQ4_RW0M9HjyGsHhX5KKFLuD1STfk4-nxvXxJ9m_Pr-Vun1jB8pg0LWLaCKm4rpsFrzCGNaqVNSDmKTDUXDEBolVCKcFNzWUmal6ANrrgUMsNuTv2jn74npZtVW-Dwa4DhwtaxXOZppoLrZbo7TFqEbEa_ULh5-r0qvwDKZBu-A</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Kalmuk, Alexander</creator><creator>Granichin, Oleg</creator><creator>Granichina, Olga</creator><creator>Mingyue Ding</creator><general>American Automatic Control Council (AACC)</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression</title><author>Kalmuk, Alexander ; Granichin, Oleg ; Granichina, Olga ; Mingyue Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-dfee5d23416bd2679cc0d4f3baee85a0e61402a2f424421cb1372b19a6c691ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accelerometers</topic><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Adaptive estimation</topic><topic>Conferences</topic><topic>Derivatives</topic><topic>Electronics</topic><topic>Estimation</topic><topic>Faults</topic><topic>Filtering algorithms</topic><topic>Gaussian</topic><topic>Probability density function</topic><topic>Regression</topic><topic>Thresholds</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalmuk, Alexander</creatorcontrib><creatorcontrib>Granichin, Oleg</creatorcontrib><creatorcontrib>Granichina, Olga</creatorcontrib><creatorcontrib>Mingyue Ding</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalmuk, Alexander</au><au>Granichin, Oleg</au><au>Granichina, Olga</au><au>Mingyue Ding</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression</atitle><btitle>2016 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2016-07-01</date><risdate>2016</risdate><spage>6839</spage><epage>6844</epage><pages>6839-6844</pages><eissn>2378-5861</eissn><eisbn>1467386820</eisbn><eisbn>9781467386807</eisbn><eisbn>9781467386821</eisbn><eisbn>1467386804</eisbn><abstract>The paper deals with the detection of abrupt changes in autonomous systems. We consider this problem in the presence of Gaussian noise and solve it in two steps. At first, spatial adaptive estimation of nonparametric regression is used to estimate the observable data. Then Filtered Derivative Algorithm is used to detect abrupt changes in the obtained data using an adaptive threshold. The estimation of this adaptive threshold is presented. This approach is then applied to demonstrate the slowdown detection of a small autonomous vehicle.</abstract><pub>American Automatic Control Council (AACC)</pub><doi>10.1109/ACC.2016.7526749</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-5861 |
ispartof | 2016 American Control Conference (ACC), 2016, p.6839-6844 |
issn | 2378-5861 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835561264 |
source | IEEE Xplore All Conference Series |
subjects | Accelerometers Adaptation models Adaptive algorithms Adaptive estimation Conferences Derivatives Electronics Estimation Faults Filtering algorithms Gaussian Probability density function Regression Thresholds Vehicles |
title | Detection of abrupt changes in autonomous system fault analysis using spatial adaptive estimation of nonparametric regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20abrupt%20changes%20in%20autonomous%20system%20fault%20analysis%20using%20spatial%20adaptive%20estimation%20of%20nonparametric%20regression&rft.btitle=2016%20American%20Control%20Conference%20(ACC)&rft.au=Kalmuk,%20Alexander&rft.date=2016-07-01&rft.spage=6839&rft.epage=6844&rft.pages=6839-6844&rft.eissn=2378-5861&rft_id=info:doi/10.1109/ACC.2016.7526749&rft.eisbn=1467386820&rft.eisbn_list=9781467386807&rft.eisbn_list=9781467386821&rft.eisbn_list=1467386804&rft_dat=%3Cproquest_CHZPO%3E1835561264%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-dfee5d23416bd2679cc0d4f3baee85a0e61402a2f424421cb1372b19a6c691ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835561264&rft_id=info:pmid/&rft_ieee_id=7526749&rfr_iscdi=true |