Loading…

Learning combination of anomaly detectors for security domain

This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors maximizing the accuracy in τ-quantile of most anomalous samples. Such an approach better reflects the needs in the security domain in which subsequent analysis of alarms is costly and can be done on...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2016-10, Vol.107, p.55-63
Main Authors: Grill, Martin, Pevný, Tomáš
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-6c086d710a50c14a0e4c1d432ffb068f50077ab9d94a13da05501ce23aac12023
cites cdi_FETCH-LOGICAL-c367t-6c086d710a50c14a0e4c1d432ffb068f50077ab9d94a13da05501ce23aac12023
container_end_page 63
container_issue
container_start_page 55
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 107
creator Grill, Martin
Pevný, Tomáš
description This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors maximizing the accuracy in τ-quantile of most anomalous samples. Such an approach better reflects the needs in the security domain in which subsequent analysis of alarms is costly and can be done only on a small number of alarms. An extensive experimental evaluation and comparison to prior art on real network data using sets of anomaly detectors of two existing intrusion detection systems shows that the proposed method not only outperforms prior art, it is also more robust to noise in training data labels, which is another important feature for deployment in practice.
doi_str_mv 10.1016/j.comnet.2016.05.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835563658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128616301669</els_id><sourcerecordid>1835563658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-6c086d710a50c14a0e4c1d432ffb068f50077ab9d94a13da05501ce23aac12023</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8FL15aJ59NDwqy-AULXvQcsmkqKW2yJq2w_95IPXnwlEnmmZfJg9AlhgoDFjd9ZcLo7VSRfKuAV0DwEVphWZOyBtEc55rKpsREilN0llIPAIwRuUK3W6ujd_6jyBE75_Xkgi9CV2gfRj0citZO1kwhpqILsUjWzNFN-Tl3nT9HJ50ekr34Pdfo_fHhbfNcbl-fXjb329JQUU-lMCBFW2PQHAxmGiwzuGWUdN0OhOw4QF3rXdM2TGPaauAcsLGEam0wAULX6HrJ3cfwOds0qdElY4dBexvmpLCknAsquMzo1R-0D3P0ebtMkVoQIpjIFFsoE0NK0XZqH92o40FhUD9OVa8Wp-rHqQKustM8dreM2fzZL2ejSsZZb2zrYrak2uD-D_gGroCAfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827622646</pqid></control><display><type>article</type><title>Learning combination of anomaly detectors for security domain</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>ScienceDirect Journals</source><creator>Grill, Martin ; Pevný, Tomáš</creator><creatorcontrib>Grill, Martin ; Pevný, Tomáš</creatorcontrib><description>This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors maximizing the accuracy in τ-quantile of most anomalous samples. Such an approach better reflects the needs in the security domain in which subsequent analysis of alarms is costly and can be done only on a small number of alarms. An extensive experimental evaluation and comparison to prior art on real network data using sets of anomaly detectors of two existing intrusion detection systems shows that the proposed method not only outperforms prior art, it is also more robust to noise in training data labels, which is another important feature for deployment in practice.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2016.05.021</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy at top ; Alarms ; Anomalies ; Anomaly detection ; Comparative analysis ; Computer information security ; Convex analysis ; Cost analysis ; Cybersecurity ; Detectors ; Ensemble systems ; Intrusion ; Intrusion detection systems ; Learning ; Network security ; Networks ; Noise ; Positive unlabeled data ; Security ; Sensors ; Studies</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2016-10, Vol.107, p.55-63</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 9, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-6c086d710a50c14a0e4c1d432ffb068f50077ab9d94a13da05501ce23aac12023</citedby><cites>FETCH-LOGICAL-c367t-6c086d710a50c14a0e4c1d432ffb068f50077ab9d94a13da05501ce23aac12023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Grill, Martin</creatorcontrib><creatorcontrib>Pevný, Tomáš</creatorcontrib><title>Learning combination of anomaly detectors for security domain</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors maximizing the accuracy in τ-quantile of most anomalous samples. Such an approach better reflects the needs in the security domain in which subsequent analysis of alarms is costly and can be done only on a small number of alarms. An extensive experimental evaluation and comparison to prior art on real network data using sets of anomaly detectors of two existing intrusion detection systems shows that the proposed method not only outperforms prior art, it is also more robust to noise in training data labels, which is another important feature for deployment in practice.</description><subject>Accuracy at top</subject><subject>Alarms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Comparative analysis</subject><subject>Computer information security</subject><subject>Convex analysis</subject><subject>Cost analysis</subject><subject>Cybersecurity</subject><subject>Detectors</subject><subject>Ensemble systems</subject><subject>Intrusion</subject><subject>Intrusion detection systems</subject><subject>Learning</subject><subject>Network security</subject><subject>Networks</subject><subject>Noise</subject><subject>Positive unlabeled data</subject><subject>Security</subject><subject>Sensors</subject><subject>Studies</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE1LxDAQhoMouK7-Aw8FL15aJ59NDwqy-AULXvQcsmkqKW2yJq2w_95IPXnwlEnmmZfJg9AlhgoDFjd9ZcLo7VSRfKuAV0DwEVphWZOyBtEc55rKpsREilN0llIPAIwRuUK3W6ujd_6jyBE75_Xkgi9CV2gfRj0citZO1kwhpqILsUjWzNFN-Tl3nT9HJ50ekr34Pdfo_fHhbfNcbl-fXjb329JQUU-lMCBFW2PQHAxmGiwzuGWUdN0OhOw4QF3rXdM2TGPaauAcsLGEam0wAULX6HrJ3cfwOds0qdElY4dBexvmpLCknAsquMzo1R-0D3P0ebtMkVoQIpjIFFsoE0NK0XZqH92o40FhUD9OVa8Wp-rHqQKustM8dreM2fzZL2ejSsZZb2zrYrak2uD-D_gGroCAfQ</recordid><startdate>20161009</startdate><enddate>20161009</enddate><creator>Grill, Martin</creator><creator>Pevný, Tomáš</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161009</creationdate><title>Learning combination of anomaly detectors for security domain</title><author>Grill, Martin ; Pevný, Tomáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-6c086d710a50c14a0e4c1d432ffb068f50077ab9d94a13da05501ce23aac12023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy at top</topic><topic>Alarms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Comparative analysis</topic><topic>Computer information security</topic><topic>Convex analysis</topic><topic>Cost analysis</topic><topic>Cybersecurity</topic><topic>Detectors</topic><topic>Ensemble systems</topic><topic>Intrusion</topic><topic>Intrusion detection systems</topic><topic>Learning</topic><topic>Network security</topic><topic>Networks</topic><topic>Noise</topic><topic>Positive unlabeled data</topic><topic>Security</topic><topic>Sensors</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grill, Martin</creatorcontrib><creatorcontrib>Pevný, Tomáš</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grill, Martin</au><au>Pevný, Tomáš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning combination of anomaly detectors for security domain</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2016-10-09</date><risdate>2016</risdate><volume>107</volume><spage>55</spage><epage>63</epage><pages>55-63</pages><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors maximizing the accuracy in τ-quantile of most anomalous samples. Such an approach better reflects the needs in the security domain in which subsequent analysis of alarms is costly and can be done only on a small number of alarms. An extensive experimental evaluation and comparison to prior art on real network data using sets of anomaly detectors of two existing intrusion detection systems shows that the proposed method not only outperforms prior art, it is also more robust to noise in training data labels, which is another important feature for deployment in practice.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2016.05.021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2016-10, Vol.107, p.55-63
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_miscellaneous_1835563658
source Library & Information Science Abstracts (LISA); ScienceDirect Journals
subjects Accuracy at top
Alarms
Anomalies
Anomaly detection
Comparative analysis
Computer information security
Convex analysis
Cost analysis
Cybersecurity
Detectors
Ensemble systems
Intrusion
Intrusion detection systems
Learning
Network security
Networks
Noise
Positive unlabeled data
Security
Sensors
Studies
title Learning combination of anomaly detectors for security domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20combination%20of%20anomaly%20detectors%20for%20security%20domain&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Grill,%20Martin&rft.date=2016-10-09&rft.volume=107&rft.spage=55&rft.epage=63&rft.pages=55-63&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2016.05.021&rft_dat=%3Cproquest_cross%3E1835563658%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-6c086d710a50c14a0e4c1d432ffb068f50077ab9d94a13da05501ce23aac12023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1827622646&rft_id=info:pmid/&rfr_iscdi=true