Loading…

The singular set of mean curvature flow with generic singularities

A mean curvature flow starting from a closed embedded hypersurface in R n + 1 must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded ( n - 1 ) -dimensional Lipschitz submanifolds plus a set...

Full description

Saved in:
Bibliographic Details
Published in:Inventiones mathematicae 2016-05, Vol.204 (2), p.443-471
Main Authors: Colding, Tobias Holck, Minicozzi, William P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3
cites cdi_FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3
container_end_page 471
container_issue 2
container_start_page 443
container_title Inventiones mathematicae
container_volume 204
creator Colding, Tobias Holck
Minicozzi, William P.
description A mean curvature flow starting from a closed embedded hypersurface in R n + 1 must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded ( n - 1 ) -dimensional Lipschitz submanifolds plus a set of dimension at most n - 2 . If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In R 3 and R 4 , we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong parabolic Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.
doi_str_mv 10.1007/s00222-015-0617-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835570376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835570376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZtoHpNkstTiCwpu6jqkmZt2ynSmJjMW_70pIwqCq7s433e4HIQuGb1hlOrbRCnnnFAmCVVME3mEJqwQnDBu9DGa5JgSYxg9RWcpbSjNoeYTdL9YA051uxoaF3GCHncBb8G12A_xw_VDBByabo_3db_GK2gh1v5HqPsa0jk6Ca5JcPF9p-jt8WExeybz16eX2d2ceFGYnoA3UDClpVBSUy-YFGxpwhJKZ6jjDJRYFqUxXBYV85WQ3ldc6ZKHIgTPKzFF12PvLnbvA6TebuvkoWlcC92QLCuFzM1Cq4xe_UE33RDb_J3lBZNKyTLTU8RGyscupQjB7mK9dfHTMmoPq9pxVZtXtYdVrcwOH52U2XYF8bf5f-kLWWN40g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415665818</pqid></control><display><type>article</type><title>The singular set of mean curvature flow with generic singularities</title><source>Springer Nature</source><creator>Colding, Tobias Holck ; Minicozzi, William P.</creator><creatorcontrib>Colding, Tobias Holck ; Minicozzi, William P.</creatorcontrib><description>A mean curvature flow starting from a closed embedded hypersurface in R n + 1 must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded ( n - 1 ) -dimensional Lipschitz submanifolds plus a set of dimension at most n - 2 . If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In R 3 and R 4 , we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong parabolic Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-015-0617-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curvature ; Evolution ; Geometry ; Hyperspaces ; Manifolds (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Optimization ; Singularities ; Singularity (mathematics) ; Texts</subject><ispartof>Inventiones mathematicae, 2016-05, Vol.204 (2), p.443-471</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3</citedby><cites>FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Colding, Tobias Holck</creatorcontrib><creatorcontrib>Minicozzi, William P.</creatorcontrib><title>The singular set of mean curvature flow with generic singularities</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>A mean curvature flow starting from a closed embedded hypersurface in R n + 1 must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded ( n - 1 ) -dimensional Lipschitz submanifolds plus a set of dimension at most n - 2 . If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In R 3 and R 4 , we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong parabolic Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.</description><subject>Curvature</subject><subject>Evolution</subject><subject>Geometry</subject><subject>Hyperspaces</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Singularities</subject><subject>Singularity (mathematics)</subject><subject>Texts</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZtoHpNkstTiCwpu6jqkmZt2ynSmJjMW_70pIwqCq7s433e4HIQuGb1hlOrbRCnnnFAmCVVME3mEJqwQnDBu9DGa5JgSYxg9RWcpbSjNoeYTdL9YA051uxoaF3GCHncBb8G12A_xw_VDBByabo_3db_GK2gh1v5HqPsa0jk6Ca5JcPF9p-jt8WExeybz16eX2d2ceFGYnoA3UDClpVBSUy-YFGxpwhJKZ6jjDJRYFqUxXBYV85WQ3ldc6ZKHIgTPKzFF12PvLnbvA6TebuvkoWlcC92QLCuFzM1Cq4xe_UE33RDb_J3lBZNKyTLTU8RGyscupQjB7mK9dfHTMmoPq9pxVZtXtYdVrcwOH52U2XYF8bf5f-kLWWN40g</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Colding, Tobias Holck</creator><creator>Minicozzi, William P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160501</creationdate><title>The singular set of mean curvature flow with generic singularities</title><author>Colding, Tobias Holck ; Minicozzi, William P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Curvature</topic><topic>Evolution</topic><topic>Geometry</topic><topic>Hyperspaces</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Singularities</topic><topic>Singularity (mathematics)</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colding, Tobias Holck</creatorcontrib><creatorcontrib>Minicozzi, William P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colding, Tobias Holck</au><au>Minicozzi, William P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The singular set of mean curvature flow with generic singularities</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>204</volume><issue>2</issue><spage>443</spage><epage>471</epage><pages>443-471</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>A mean curvature flow starting from a closed embedded hypersurface in R n + 1 must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded ( n - 1 ) -dimensional Lipschitz submanifolds plus a set of dimension at most n - 2 . If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In R 3 and R 4 , we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong parabolic Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-015-0617-5</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2016-05, Vol.204 (2), p.443-471
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_miscellaneous_1835570376
source Springer Nature
subjects Curvature
Evolution
Geometry
Hyperspaces
Manifolds (mathematics)
Mathematical analysis
Mathematics
Mathematics and Statistics
Optimization
Singularities
Singularity (mathematics)
Texts
title The singular set of mean curvature flow with generic singularities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20singular%20set%20of%20mean%20curvature%20flow%20with%20generic%20singularities&rft.jtitle=Inventiones%20mathematicae&rft.au=Colding,%20Tobias%20Holck&rft.date=2016-05-01&rft.volume=204&rft.issue=2&rft.spage=443&rft.epage=471&rft.pages=443-471&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-015-0617-5&rft_dat=%3Cproquest_cross%3E1835570376%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415665818&rft_id=info:pmid/&rfr_iscdi=true