Loading…
The singular set of mean curvature flow with generic singularities
A mean curvature flow starting from a closed embedded hypersurface in R n + 1 must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded ( n - 1 ) -dimensional Lipschitz submanifolds plus a set...
Saved in:
Published in: | Inventiones mathematicae 2016-05, Vol.204 (2), p.443-471 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3 |
container_end_page | 471 |
container_issue | 2 |
container_start_page | 443 |
container_title | Inventiones mathematicae |
container_volume | 204 |
creator | Colding, Tobias Holck Minicozzi, William P. |
description | A mean curvature flow starting from a closed embedded hypersurface in
R
n
+
1
must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded
(
n
-
1
)
-dimensional Lipschitz submanifolds plus a set of dimension at most
n
-
2
. If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In
R
3
and
R
4
, we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong
parabolic
Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal. |
doi_str_mv | 10.1007/s00222-015-0617-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835570376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835570376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZtoHpNkstTiCwpu6jqkmZt2ynSmJjMW_70pIwqCq7s433e4HIQuGb1hlOrbRCnnnFAmCVVME3mEJqwQnDBu9DGa5JgSYxg9RWcpbSjNoeYTdL9YA051uxoaF3GCHncBb8G12A_xw_VDBByabo_3db_GK2gh1v5HqPsa0jk6Ca5JcPF9p-jt8WExeybz16eX2d2ceFGYnoA3UDClpVBSUy-YFGxpwhJKZ6jjDJRYFqUxXBYV85WQ3ldc6ZKHIgTPKzFF12PvLnbvA6TebuvkoWlcC92QLCuFzM1Cq4xe_UE33RDb_J3lBZNKyTLTU8RGyscupQjB7mK9dfHTMmoPq9pxVZtXtYdVrcwOH52U2XYF8bf5f-kLWWN40g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415665818</pqid></control><display><type>article</type><title>The singular set of mean curvature flow with generic singularities</title><source>Springer Nature</source><creator>Colding, Tobias Holck ; Minicozzi, William P.</creator><creatorcontrib>Colding, Tobias Holck ; Minicozzi, William P.</creatorcontrib><description>A mean curvature flow starting from a closed embedded hypersurface in
R
n
+
1
must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded
(
n
-
1
)
-dimensional Lipschitz submanifolds plus a set of dimension at most
n
-
2
. If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In
R
3
and
R
4
, we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong
parabolic
Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-015-0617-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curvature ; Evolution ; Geometry ; Hyperspaces ; Manifolds (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Optimization ; Singularities ; Singularity (mathematics) ; Texts</subject><ispartof>Inventiones mathematicae, 2016-05, Vol.204 (2), p.443-471</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3</citedby><cites>FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Colding, Tobias Holck</creatorcontrib><creatorcontrib>Minicozzi, William P.</creatorcontrib><title>The singular set of mean curvature flow with generic singularities</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>A mean curvature flow starting from a closed embedded hypersurface in
R
n
+
1
must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded
(
n
-
1
)
-dimensional Lipschitz submanifolds plus a set of dimension at most
n
-
2
. If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In
R
3
and
R
4
, we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong
parabolic
Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.</description><subject>Curvature</subject><subject>Evolution</subject><subject>Geometry</subject><subject>Hyperspaces</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Singularities</subject><subject>Singularity (mathematics)</subject><subject>Texts</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZtoHpNkstTiCwpu6jqkmZt2ynSmJjMW_70pIwqCq7s433e4HIQuGb1hlOrbRCnnnFAmCVVME3mEJqwQnDBu9DGa5JgSYxg9RWcpbSjNoeYTdL9YA051uxoaF3GCHncBb8G12A_xw_VDBByabo_3db_GK2gh1v5HqPsa0jk6Ca5JcPF9p-jt8WExeybz16eX2d2ceFGYnoA3UDClpVBSUy-YFGxpwhJKZ6jjDJRYFqUxXBYV85WQ3ldc6ZKHIgTPKzFF12PvLnbvA6TebuvkoWlcC92QLCuFzM1Cq4xe_UE33RDb_J3lBZNKyTLTU8RGyscupQjB7mK9dfHTMmoPq9pxVZtXtYdVrcwOH52U2XYF8bf5f-kLWWN40g</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Colding, Tobias Holck</creator><creator>Minicozzi, William P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160501</creationdate><title>The singular set of mean curvature flow with generic singularities</title><author>Colding, Tobias Holck ; Minicozzi, William P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Curvature</topic><topic>Evolution</topic><topic>Geometry</topic><topic>Hyperspaces</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Singularities</topic><topic>Singularity (mathematics)</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colding, Tobias Holck</creatorcontrib><creatorcontrib>Minicozzi, William P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colding, Tobias Holck</au><au>Minicozzi, William P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The singular set of mean curvature flow with generic singularities</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>204</volume><issue>2</issue><spage>443</spage><epage>471</epage><pages>443-471</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>A mean curvature flow starting from a closed embedded hypersurface in
R
n
+
1
must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded
(
n
-
1
)
-dimensional Lipschitz submanifolds plus a set of dimension at most
n
-
2
. If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In
R
3
and
R
4
, we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong
parabolic
Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-015-0617-5</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2016-05, Vol.204 (2), p.443-471 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835570376 |
source | Springer Nature |
subjects | Curvature Evolution Geometry Hyperspaces Manifolds (mathematics) Mathematical analysis Mathematics Mathematics and Statistics Optimization Singularities Singularity (mathematics) Texts |
title | The singular set of mean curvature flow with generic singularities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20singular%20set%20of%20mean%20curvature%20flow%20with%20generic%20singularities&rft.jtitle=Inventiones%20mathematicae&rft.au=Colding,%20Tobias%20Holck&rft.date=2016-05-01&rft.volume=204&rft.issue=2&rft.spage=443&rft.epage=471&rft.pages=443-471&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-015-0617-5&rft_dat=%3Cproquest_cross%3E1835570376%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-ec9e4167536570c31531b9fbe8a90a21e63b4899254d1cd35ccd26782f4ffc2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415665818&rft_id=info:pmid/&rfr_iscdi=true |