Loading…

Enhanced functionality of colloidal polyaniline/polyvinyl alcohol nanocomposite as an antibacterial agent

This study describes the preparation of colloidal polyaniline/polyvinyl alcohol (PAn/PVA) nanocomposite by chemical polymerization of aniline (AN) in the presence of ammonium peroxydisulphate (APS) as an oxidant and PVA as a stabilizer. The product was characterized morphologically using a scanning...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vinyl & additive technology 2016-09, Vol.22 (3), p.267-272
Main Authors: Lashkenari, Mohammad Soleimani, Eisazadeh, Hossein
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study describes the preparation of colloidal polyaniline/polyvinyl alcohol (PAn/PVA) nanocomposite by chemical polymerization of aniline (AN) in the presence of ammonium peroxydisulphate (APS) as an oxidant and PVA as a stabilizer. The product was characterized morphologically using a scanning electron microscope (SEM) and transmission electron microscopy (TEM), chemically using Fourier transform infrared (FTIR) and optically UV–visible. The prepared polymer was then tested for the antibacterial properties against gram‐negative bacteria: Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa); and gram‐positive bacteria: Staphylococcus aureus (S. aureus). The antibacterial properties were assessed by disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBCs), and the bactericidal effect methods. The results clearly showed that colloidal PAn/PVA nanocomposite strongly inhibits the growth of wild‐type E. coli (19 ± 0.5) mm followed by P. aeruginosa (17 ± 0.5 mm) and S. aureus (17.5 ± 0.5 mm) bacteria. S. aureus was completely killed after exposure for only 15 min, whereas S. aureus and E. coli were completely killed after exposure for 25 min. J. VINYL ADDIT. TECHNOL., 22:267–272, 2016. © 2014 Society of Plastics Engineers
ISSN:1083-5601
1548-0585
DOI:10.1002/vnl.21440