Loading…

Controlled co-delivery of hydrophilic and hydrophobic drugs from thermosensitive and crystallizable copolymer nanoparticles

ABSTRACT Functionalized amphiphilic block copolymers poly(N‐isopropyl acrylamide)‐b‐poly(stearyl methacrylate) (PNIPAM‐PSMA) are synthesized. Their self‐assembled core‐shell nanoparticles have the hydrophilic thermosensitive shell and hydrophobic crystallizable core. Nanoparticles exhibit volume pha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2016-11, Vol.133 (42), p.np-n/a
Main Authors: Xu, Xianbo, Shan, Guorong R., Pan, Pengju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Functionalized amphiphilic block copolymers poly(N‐isopropyl acrylamide)‐b‐poly(stearyl methacrylate) (PNIPAM‐PSMA) are synthesized. Their self‐assembled core‐shell nanoparticles have the hydrophilic thermosensitive shell and hydrophobic crystallizable core. Nanoparticles exhibit volume phase transition at temperature of 38  °C and its poly(stearyl methacrylate) (PSMA) moiety could form nano size crystals to retain drugs, making them good carriers for drug co‐delivery system. Thermosensitivity and crystallinity of nanoparticles are characterized with dynamic light scattering (DLS), differential scanning calorimetry (DSC), small‐angle X‐ray scattering (SAXS), and atomic force microscopy (AFM). The interactions and relationship between chemical structures of copolymer nanoparticles and loading drugs are discussed. Different loading techniques and combined loading of hydrophobic/hydrophilic drugs are studied. Nanoparticles show a good and controllable drug loading capacity (DL) of hydrophilic/hydrophobic drugs. The drugs release kinetics is analyzed with Fick's law and Weibull model. A general method for analyzing drug release kinetics from nanoparticles is proposed. Weibull model is well fitted and the parameters with definite physical meaning are analyzed. PNIPAM‐PSMA nanoparticles show a quite different thermal response, temporal regulation, and sustained release effect of hydrophilic and hydrophobic drugs, suggesting a promising application in extended and controlled co‐delivery system of multi‐drug. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44132.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.44132