Loading…

Skopus: Mining top-k sequential patterns under leverage

This paper presents a framework for exact discovery of the top- k sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm f...

Full description

Saved in:
Bibliographic Details
Published in:Data mining and knowledge discovery 2016-09, Vol.30 (5), p.1086-1111
Main Authors: Petitjean, François, Li, Tao, Tatti, Nikolaj, Webb, Geoffrey I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3
cites cdi_FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3
container_end_page 1111
container_issue 5
container_start_page 1086
container_title Data mining and knowledge discovery
container_volume 30
creator Petitjean, François
Li, Tao
Tatti, Nikolaj
Webb, Geoffrey I.
description This paper presents a framework for exact discovery of the top- k sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm for the exact discovery of top- k sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the k sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art.
doi_str_mv 10.1007/s10618-016-0467-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835583014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4155813591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM03Spt5k8QtWPKjgLcR2unS3m9akFfz3ZqkHETzNHJ73ZeZh7BThAgHyy4CQoeaAGQeZ5bzYYzNUueC5yt724y605EojHLKjENYAoFIBM5Y_b7p-DFfJY-Mat0qGruebJNDHSG5obJv0dhjIu5CMriKftPRJ3q7omB3Utg108jPn7PX25mVxz5dPdw-L6yUvhSwGTpTiuy1JYl3WmOo6B1solasiV6WVpdRQpFUqsBI6QyKqdKVBloA2U7KqxZydT7297-JNYTDbJpTUttZRNwaDWiilBaCM6NkfdN2N3sXrIoUijR9DFimcqNJ3IXiqTe-brfVfBsHsVJpJpYkqzU6lKWImnTIhsm5F_lfzv6Fvwfh1LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813205206</pqid></control><display><type>article</type><title>Skopus: Mining top-k sequential patterns under leverage</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Petitjean, François ; Li, Tao ; Tatti, Nikolaj ; Webb, Geoffrey I.</creator><creatorcontrib>Petitjean, François ; Li, Tao ; Tatti, Nikolaj ; Webb, Geoffrey I.</creatorcontrib><description>This paper presents a framework for exact discovery of the top- k sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm for the exact discovery of top- k sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the k sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-016-0467-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Consistency ; Construction ; Data mining ; Data Mining and Knowledge Discovery ; Experiments ; Information Storage and Retrieval ; Partitions ; Physics ; State of the art ; Statistics for Engineering</subject><ispartof>Data mining and knowledge discovery, 2016-09, Vol.30 (5), p.1086-1111</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3</citedby><cites>FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1813205206/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1813205206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids></links><search><creatorcontrib>Petitjean, François</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Tatti, Nikolaj</creatorcontrib><creatorcontrib>Webb, Geoffrey I.</creatorcontrib><title>Skopus: Mining top-k sequential patterns under leverage</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>This paper presents a framework for exact discovery of the top- k sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm for the exact discovery of top- k sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the k sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Consistency</subject><subject>Construction</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Experiments</subject><subject>Information Storage and Retrieval</subject><subject>Partitions</subject><subject>Physics</subject><subject>State of the art</subject><subject>Statistics for Engineering</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM03Spt5k8QtWPKjgLcR2unS3m9akFfz3ZqkHETzNHJ73ZeZh7BThAgHyy4CQoeaAGQeZ5bzYYzNUueC5yt724y605EojHLKjENYAoFIBM5Y_b7p-DFfJY-Mat0qGruebJNDHSG5obJv0dhjIu5CMriKftPRJ3q7omB3Utg108jPn7PX25mVxz5dPdw-L6yUvhSwGTpTiuy1JYl3WmOo6B1solasiV6WVpdRQpFUqsBI6QyKqdKVBloA2U7KqxZydT7297-JNYTDbJpTUttZRNwaDWiilBaCM6NkfdN2N3sXrIoUijR9DFimcqNJ3IXiqTe-brfVfBsHsVJpJpYkqzU6lKWImnTIhsm5F_lfzv6Fvwfh1LA</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Petitjean, François</creator><creator>Li, Tao</creator><creator>Tatti, Nikolaj</creator><creator>Webb, Geoffrey I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>Skopus: Mining top-k sequential patterns under leverage</title><author>Petitjean, François ; Li, Tao ; Tatti, Nikolaj ; Webb, Geoffrey I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Consistency</topic><topic>Construction</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Experiments</topic><topic>Information Storage and Retrieval</topic><topic>Partitions</topic><topic>Physics</topic><topic>State of the art</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petitjean, François</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Tatti, Nikolaj</creatorcontrib><creatorcontrib>Webb, Geoffrey I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petitjean, François</au><au>Li, Tao</au><au>Tatti, Nikolaj</au><au>Webb, Geoffrey I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skopus: Mining top-k sequential patterns under leverage</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>30</volume><issue>5</issue><spage>1086</spage><epage>1111</epage><pages>1086-1111</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>This paper presents a framework for exact discovery of the top- k sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm for the exact discovery of top- k sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the k sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-016-0467-9</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1384-5810
ispartof Data mining and knowledge discovery, 2016-09, Vol.30 (5), p.1086-1111
issn 1384-5810
1573-756X
language eng
recordid cdi_proquest_miscellaneous_1835583014
source ABI/INFORM Global; Springer Link
subjects Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Consistency
Construction
Data mining
Data Mining and Knowledge Discovery
Experiments
Information Storage and Retrieval
Partitions
Physics
State of the art
Statistics for Engineering
title Skopus: Mining top-k sequential patterns under leverage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skopus:%20Mining%20top-k%20sequential%20patterns%20under%20leverage&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Petitjean,%20Fran%C3%A7ois&rft.date=2016-09-01&rft.volume=30&rft.issue=5&rft.spage=1086&rft.epage=1111&rft.pages=1086-1111&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-016-0467-9&rft_dat=%3Cproquest_cross%3E4155813591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1813205206&rft_id=info:pmid/&rfr_iscdi=true