Loading…
Skopus: Mining top-k sequential patterns under leverage
This paper presents a framework for exact discovery of the top- k sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm f...
Saved in:
Published in: | Data mining and knowledge discovery 2016-09, Vol.30 (5), p.1086-1111 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3 |
container_end_page | 1111 |
container_issue | 5 |
container_start_page | 1086 |
container_title | Data mining and knowledge discovery |
container_volume | 30 |
creator | Petitjean, François Li, Tao Tatti, Nikolaj Webb, Geoffrey I. |
description | This paper presents a framework for exact discovery of the top-
k
sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm for the exact discovery of top-
k
sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the
k
sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art. |
doi_str_mv | 10.1007/s10618-016-0467-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835583014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4155813591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM03Spt5k8QtWPKjgLcR2unS3m9akFfz3ZqkHETzNHJ73ZeZh7BThAgHyy4CQoeaAGQeZ5bzYYzNUueC5yt724y605EojHLKjENYAoFIBM5Y_b7p-DFfJY-Mat0qGruebJNDHSG5obJv0dhjIu5CMriKftPRJ3q7omB3Utg108jPn7PX25mVxz5dPdw-L6yUvhSwGTpTiuy1JYl3WmOo6B1solasiV6WVpdRQpFUqsBI6QyKqdKVBloA2U7KqxZydT7297-JNYTDbJpTUttZRNwaDWiilBaCM6NkfdN2N3sXrIoUijR9DFimcqNJ3IXiqTe-brfVfBsHsVJpJpYkqzU6lKWImnTIhsm5F_lfzv6Fvwfh1LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813205206</pqid></control><display><type>article</type><title>Skopus: Mining top-k sequential patterns under leverage</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Petitjean, François ; Li, Tao ; Tatti, Nikolaj ; Webb, Geoffrey I.</creator><creatorcontrib>Petitjean, François ; Li, Tao ; Tatti, Nikolaj ; Webb, Geoffrey I.</creatorcontrib><description>This paper presents a framework for exact discovery of the top-
k
sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm for the exact discovery of top-
k
sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the
k
sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-016-0467-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Consistency ; Construction ; Data mining ; Data Mining and Knowledge Discovery ; Experiments ; Information Storage and Retrieval ; Partitions ; Physics ; State of the art ; Statistics for Engineering</subject><ispartof>Data mining and knowledge discovery, 2016-09, Vol.30 (5), p.1086-1111</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3</citedby><cites>FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1813205206/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1813205206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids></links><search><creatorcontrib>Petitjean, François</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Tatti, Nikolaj</creatorcontrib><creatorcontrib>Webb, Geoffrey I.</creatorcontrib><title>Skopus: Mining top-k sequential patterns under leverage</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>This paper presents a framework for exact discovery of the top-
k
sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm for the exact discovery of top-
k
sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the
k
sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Consistency</subject><subject>Construction</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Experiments</subject><subject>Information Storage and Retrieval</subject><subject>Partitions</subject><subject>Physics</subject><subject>State of the art</subject><subject>Statistics for Engineering</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM03Spt5k8QtWPKjgLcR2unS3m9akFfz3ZqkHETzNHJ73ZeZh7BThAgHyy4CQoeaAGQeZ5bzYYzNUueC5yt724y605EojHLKjENYAoFIBM5Y_b7p-DFfJY-Mat0qGruebJNDHSG5obJv0dhjIu5CMriKftPRJ3q7omB3Utg108jPn7PX25mVxz5dPdw-L6yUvhSwGTpTiuy1JYl3WmOo6B1solasiV6WVpdRQpFUqsBI6QyKqdKVBloA2U7KqxZydT7297-JNYTDbJpTUttZRNwaDWiilBaCM6NkfdN2N3sXrIoUijR9DFimcqNJ3IXiqTe-brfVfBsHsVJpJpYkqzU6lKWImnTIhsm5F_lfzv6Fvwfh1LA</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Petitjean, François</creator><creator>Li, Tao</creator><creator>Tatti, Nikolaj</creator><creator>Webb, Geoffrey I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>Skopus: Mining top-k sequential patterns under leverage</title><author>Petitjean, François ; Li, Tao ; Tatti, Nikolaj ; Webb, Geoffrey I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Consistency</topic><topic>Construction</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Experiments</topic><topic>Information Storage and Retrieval</topic><topic>Partitions</topic><topic>Physics</topic><topic>State of the art</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petitjean, François</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Tatti, Nikolaj</creatorcontrib><creatorcontrib>Webb, Geoffrey I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petitjean, François</au><au>Li, Tao</au><au>Tatti, Nikolaj</au><au>Webb, Geoffrey I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skopus: Mining top-k sequential patterns under leverage</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>30</volume><issue>5</issue><spage>1086</spage><epage>1111</epage><pages>1086-1111</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>This paper presents a framework for exact discovery of the top-
k
sequential patterns under Leverage. It combines (1) a novel definition of the expected support for a sequential pattern—a concept on which most interestingness measures directly rely—with (2) Skopus: a new branch-and-bound algorithm for the exact discovery of top-
k
sequential patterns under a given measure of interest. Our interestingness measure employs the partition approach. A pattern is interesting to the extent that it is more frequent than can be explained by assuming independence between any of the pairs of patterns from which it can be composed. The larger the support compared to the expectation under independence, the more interesting is the pattern. We build on these two elements to exactly extract the
k
sequential patterns with highest leverage, consistent with our definition of expected support. We conduct experiments on both synthetic data with known patterns and real-world datasets; both experiments confirm the consistency and relevance of our approach with regard to the state of the art.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-016-0467-9</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5810 |
ispartof | Data mining and knowledge discovery, 2016-09, Vol.30 (5), p.1086-1111 |
issn | 1384-5810 1573-756X |
language | eng |
recordid | cdi_proquest_miscellaneous_1835583014 |
source | ABI/INFORM Global; Springer Link |
subjects | Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Consistency Construction Data mining Data Mining and Knowledge Discovery Experiments Information Storage and Retrieval Partitions Physics State of the art Statistics for Engineering |
title | Skopus: Mining top-k sequential patterns under leverage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skopus:%20Mining%20top-k%20sequential%20patterns%20under%20leverage&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Petitjean,%20Fran%C3%A7ois&rft.date=2016-09-01&rft.volume=30&rft.issue=5&rft.spage=1086&rft.epage=1111&rft.pages=1086-1111&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-016-0467-9&rft_dat=%3Cproquest_cross%3E4155813591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-ee21bace41fcf128f70a95575975ca4c48092d231d3861eeed8d804c01a654df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1813205206&rft_id=info:pmid/&rfr_iscdi=true |