Loading…
Dynamic Modeling and Effect of Dehydration on Segmented IPMC Actuators Following Variable Parameter Pseudo-Rigid Body Modeling Technique
An ionic polymer-metal composite actuator has been analyzed following the variable parameters pseudo-rigid body modeling (VPPRBM) technique in order to assess the effect of dehydration on bending resistance and bending response. An experiment is conducted with a single patch IPMC actuator and the de...
Saved in:
Published in: | Mechanics of advanced materials and structures 2014-02, Vol.21 (2), p.129-138 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An ionic polymer-metal composite actuator has been analyzed following the variable parameters pseudo-rigid body modeling (VPPRBM) technique in order to assess the effect of dehydration on bending resistance and bending response. An experiment is conducted with a single patch IPMC actuator and the dehydration factor is obtained following the Cobb-Douglas production method. An energy-based dynamic model of the patches has been derived after developing the forward kinematics incorporating loss due to dehydration. Simulation has been performed for two segmented IPMC patches to demonstrate the change in bending resistance, bending response, and end-tip positioning for various input voltages. |
---|---|
ISSN: | 1537-6494 1537-6532 |
DOI: | 10.1080/15376494.2012.680665 |