Loading…

Tannase-mediated biotransformation assisted separation and purification of theaflavin and epigallocatechin by high speed counter current chromatography and preparative high performance liquid chromatography: A comparative study

A large scale isolation and purification of theaflavin (TF) and epigallocatechin (EGC) has been successfully developed by tannase‐mediated biotransformation combining high‐speed countercurrent chromatography. After tannase hydrolysis of a commercially available theaflavins extract (TE), the content...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy research and technique 2016-09, Vol.79 (9), p.880-889
Main Authors: Xia, Guobin, Lin, Chunfang, Liu, Songbai
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A large scale isolation and purification of theaflavin (TF) and epigallocatechin (EGC) has been successfully developed by tannase‐mediated biotransformation combining high‐speed countercurrent chromatography. After tannase hydrolysis of a commercially available theaflavins extract (TE), the content of TF and EGC in tannase‐mediated biotransformation product (TBP) achieved approximately 3 times enrichment. SEM studies revealed smooth tannase biotransformation and the possibility of recovery of the tannase. A single 1.5 hours' HSCCC separation for TF and EGC employing a two‐phase solvent system could simultaneously produce 180.8 mg of 97.3% purity TF and 87.5 mg of 97.3% purity EGC. However, a preparative HPLC separation of maximum injection volume containing 120 mg TBP prepared 11.2 mg TF of 94.9% purity and 7.7 mg EGC of 89.9% purity. HSCCC separation demonstrated significant advantages over Prep HPLC in terms of sample loading size, separation time, environmental friendly solvent systems, and the production.
ISSN:1059-910X
1097-0029
DOI:10.1002/jemt.22715