Loading…

Global effects of transmitted shock wave propagation through the Earth's inner magnetosphere: First results from 3-D hybrid kinetic modeling

We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwe...

Full description

Saved in:
Bibliographic Details
Published in:Planetary and space science 2016-09, Vol.129, p.13-23
Main Authors: Lipatov, A.S., Sibeck, D.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-e219915237cb456a9ffbee6ea12dc5217c1b20dca7b151354f7d8955d5319df43
cites cdi_FETCH-LOGICAL-c384t-e219915237cb456a9ffbee6ea12dc5217c1b20dca7b151354f7d8955d5319df43
container_end_page 23
container_issue
container_start_page 13
container_title Planetary and space science
container_volume 129
creator Lipatov, A.S.
Sibeck, D.G.
description We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave–particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere. •The passage of the shock generates non-Maxwellian velocity distribution functions with an anisotropy from 5 to 9 that can trigger waves and instabilities like a mirror-ballooning instability.•Transmitted shocks deform the ring current, radiation belt and plasmasphere.•A strong compression in the dawn–dusk region (middle column) with a maximum in the equatorial plane will result in the generation of Alfén waves propagating along the magnetic field lines.
doi_str_mv 10.1016/j.pss.2016.05.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835590551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032063316300332</els_id><sourcerecordid>1835590551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e219915237cb456a9ffbee6ea12dc5217c1b20dca7b151354f7d8955d5319df43</originalsourceid><addsrcrecordid>eNqFkctu1TAQhiMEEofCAyCx8A42SX2Jc4EVKr0gVWIDa8uxxyc-Tezg8WnVd-ChcTmsYTUj_Rdp5quqt4w2jLLu_NBsiA0va0NlQxl9Vu3Y0Ita0mF4Xu0oFbymnRAvq1eIB0pp1_F-V_26XuKkFwLOgclIoiM56YCrzxkswTmaO_Kg74FsKW56r7OPgeQ5xeN-LhPIpU55fo_EhwCJrHofIEfcZkjwkVz5hJkkwONSyl2KKxH1FzI_TslbcueL1xuyRguLD_vX1QunF4Q3f-dZ9ePq8vvFTX377frrxefb2oihzTVwNo5MctGbqZWdHp2bADrQjFsjOesNmzi1RvcTk0zI1vV2GKW0UrDRulacVR9OveWmn0fArFaPBpZFB4hHVGwQUo5UlvD_rYwNA-eDKFZ2spoUERM4tSW_6vSoGFVPkNRBFUjqCZKiUhVIJfPulAkatQo5_ZH7gof3bVfkTycZyjfuPSSFxkMwYH0quJSN_h_lvwG766SD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811882283</pqid></control><display><type>article</type><title>Global effects of transmitted shock wave propagation through the Earth's inner magnetosphere: First results from 3-D hybrid kinetic modeling</title><source>Elsevier</source><creator>Lipatov, A.S. ; Sibeck, D.G.</creator><creatorcontrib>Lipatov, A.S. ; Sibeck, D.G.</creatorcontrib><description>We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave–particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere. •The passage of the shock generates non-Maxwellian velocity distribution functions with an anisotropy from 5 to 9 that can trigger waves and instabilities like a mirror-ballooning instability.•Transmitted shocks deform the ring current, radiation belt and plasmasphere.•A strong compression in the dawn–dusk region (middle column) with a maximum in the equatorial plane will result in the generation of Alfén waves propagating along the magnetic field lines.</description><identifier>ISSN: 0032-0633</identifier><identifier>EISSN: 1873-5088</identifier><identifier>DOI: 10.1016/j.pss.2016.05.010</identifier><language>eng</language><publisher>Goddard Space Flight Center: Elsevier Ltd</publisher><subject>Earth magnetosphere ; Interplanetary shocks ; Magnetosphere ; Magnetospheres ; Plasmasphere ; Radiation belts ; Ring current ; Ring currents ; Shock waves ; Solar wind ; Space Sciences (General) ; Transport ; Wave-particle interactions</subject><ispartof>Planetary and space science, 2016-09, Vol.129, p.13-23</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-e219915237cb456a9ffbee6ea12dc5217c1b20dca7b151354f7d8955d5319df43</citedby><cites>FETCH-LOGICAL-c384t-e219915237cb456a9ffbee6ea12dc5217c1b20dca7b151354f7d8955d5319df43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lipatov, A.S.</creatorcontrib><creatorcontrib>Sibeck, D.G.</creatorcontrib><title>Global effects of transmitted shock wave propagation through the Earth's inner magnetosphere: First results from 3-D hybrid kinetic modeling</title><title>Planetary and space science</title><description>We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave–particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere. •The passage of the shock generates non-Maxwellian velocity distribution functions with an anisotropy from 5 to 9 that can trigger waves and instabilities like a mirror-ballooning instability.•Transmitted shocks deform the ring current, radiation belt and plasmasphere.•A strong compression in the dawn–dusk region (middle column) with a maximum in the equatorial plane will result in the generation of Alfén waves propagating along the magnetic field lines.</description><subject>Earth magnetosphere</subject><subject>Interplanetary shocks</subject><subject>Magnetosphere</subject><subject>Magnetospheres</subject><subject>Plasmasphere</subject><subject>Radiation belts</subject><subject>Ring current</subject><subject>Ring currents</subject><subject>Shock waves</subject><subject>Solar wind</subject><subject>Space Sciences (General)</subject><subject>Transport</subject><subject>Wave-particle interactions</subject><issn>0032-0633</issn><issn>1873-5088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1TAQhiMEEofCAyCx8A42SX2Jc4EVKr0gVWIDa8uxxyc-Tezg8WnVd-ChcTmsYTUj_Rdp5quqt4w2jLLu_NBsiA0va0NlQxl9Vu3Y0Ita0mF4Xu0oFbymnRAvq1eIB0pp1_F-V_26XuKkFwLOgclIoiM56YCrzxkswTmaO_Kg74FsKW56r7OPgeQ5xeN-LhPIpU55fo_EhwCJrHofIEfcZkjwkVz5hJkkwONSyl2KKxH1FzI_TslbcueL1xuyRguLD_vX1QunF4Q3f-dZ9ePq8vvFTX377frrxefb2oihzTVwNo5MctGbqZWdHp2bADrQjFsjOesNmzi1RvcTk0zI1vV2GKW0UrDRulacVR9OveWmn0fArFaPBpZFB4hHVGwQUo5UlvD_rYwNA-eDKFZ2spoUERM4tSW_6vSoGFVPkNRBFUjqCZKiUhVIJfPulAkatQo5_ZH7gof3bVfkTycZyjfuPSSFxkMwYH0quJSN_h_lvwG766SD</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Lipatov, A.S.</creator><creator>Sibeck, D.G.</creator><general>Elsevier Ltd</general><general>ELSEVIER</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Global effects of transmitted shock wave propagation through the Earth's inner magnetosphere: First results from 3-D hybrid kinetic modeling</title><author>Lipatov, A.S. ; Sibeck, D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e219915237cb456a9ffbee6ea12dc5217c1b20dca7b151354f7d8955d5319df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Earth magnetosphere</topic><topic>Interplanetary shocks</topic><topic>Magnetosphere</topic><topic>Magnetospheres</topic><topic>Plasmasphere</topic><topic>Radiation belts</topic><topic>Ring current</topic><topic>Ring currents</topic><topic>Shock waves</topic><topic>Solar wind</topic><topic>Space Sciences (General)</topic><topic>Transport</topic><topic>Wave-particle interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipatov, A.S.</creatorcontrib><creatorcontrib>Sibeck, D.G.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Planetary and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipatov, A.S.</au><au>Sibeck, D.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global effects of transmitted shock wave propagation through the Earth's inner magnetosphere: First results from 3-D hybrid kinetic modeling</atitle><jtitle>Planetary and space science</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>129</volume><spage>13</spage><epage>23</epage><pages>13-23</pages><issn>0032-0633</issn><eissn>1873-5088</eissn><abstract>We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave–particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere. •The passage of the shock generates non-Maxwellian velocity distribution functions with an anisotropy from 5 to 9 that can trigger waves and instabilities like a mirror-ballooning instability.•Transmitted shocks deform the ring current, radiation belt and plasmasphere.•A strong compression in the dawn–dusk region (middle column) with a maximum in the equatorial plane will result in the generation of Alfén waves propagating along the magnetic field lines.</abstract><cop>Goddard Space Flight Center</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pss.2016.05.010</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0633
ispartof Planetary and space science, 2016-09, Vol.129, p.13-23
issn 0032-0633
1873-5088
language eng
recordid cdi_proquest_miscellaneous_1835590551
source Elsevier
subjects Earth magnetosphere
Interplanetary shocks
Magnetosphere
Magnetospheres
Plasmasphere
Radiation belts
Ring current
Ring currents
Shock waves
Solar wind
Space Sciences (General)
Transport
Wave-particle interactions
title Global effects of transmitted shock wave propagation through the Earth's inner magnetosphere: First results from 3-D hybrid kinetic modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20effects%20of%20transmitted%20shock%20wave%20propagation%20through%20the%20Earth's%20inner%20magnetosphere:%20First%20results%20from%203-D%20hybrid%20kinetic%20modeling&rft.jtitle=Planetary%20and%20space%20science&rft.au=Lipatov,%20A.S.&rft.date=2016-09-01&rft.volume=129&rft.spage=13&rft.epage=23&rft.pages=13-23&rft.issn=0032-0633&rft.eissn=1873-5088&rft_id=info:doi/10.1016/j.pss.2016.05.010&rft_dat=%3Cproquest_cross%3E1835590551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-e219915237cb456a9ffbee6ea12dc5217c1b20dca7b151354f7d8955d5319df43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1811882283&rft_id=info:pmid/&rfr_iscdi=true