Loading…

Image Interpolation Based on Non-local Geometric Similarities and Directional Gradients

Image interpolation offers an efficient way to compose a high-resolution (HR) image from the observed low-resolution (LR) image. Advanced interpolation techniques design the interpolation weighting coefficients by solving a minimum mean-square-error (MMSE) problem in which the local geometric simila...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2016-09, Vol.18 (9), p.1707-1719
Main Authors: Shuyuan Zhu, Bing Zeng, Liaoyuan Zeng, Gabbouj, Moncef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Image interpolation offers an efficient way to compose a high-resolution (HR) image from the observed low-resolution (LR) image. Advanced interpolation techniques design the interpolation weighting coefficients by solving a minimum mean-square-error (MMSE) problem in which the local geometric similarity is often considered. However, using local geometric similarities cannot usually make the MMSE-based interpolation as reliable as expected. To solve this problem, we propose a robust interpolation scheme by using the nonlocal geometric similarities to construct the HR image. In our proposed method, the MMSE-based interpolation weighting coefficients are generated by solving a regularized least squares problem that is built upon a number of dual-reference patches drawn from the given LR image and regularized by the directional gradients of these patches. Experimental results demonstrate that our proposed method offers a remarkable quality improvement as compared to some state-of-the-art methods, both objectively and subjectively.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2016.2593039