Loading…

Improved multi-stage online monitoring strategy for batch process

In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is exe...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Chunlei, Wang, Pu, Gao, Xuejin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6836
container_issue
container_start_page 6832
container_title
container_volume
creator Li, Chunlei
Wang, Pu
Gao, Xuejin
description In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is executed. According to the criterion of minimum similarity distances, time-slice matrices are sorted to realize separation of operation sub-stage more particularly for batch process. The two-step separation method considers evolvement of the underlying process behavior. Therefore, the method can accurately divide the stages. Finally, multi-way principal component analysis (MPCA) model is established for each phase and applied to on-line monitoring for batch process. The proposed method is applied to penicillin fermentation process, the simulation results show that the multistage-based MPCA method has better performance, compared with the traditional MPCA.
doi_str_mv 10.1109/ChiCC.2016.7554432
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835599908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7554432</ieee_id><sourcerecordid>1835599908</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-6e369624a3c7bf98ddf0cc213afa6ac573523e9b54e7f1647757637dc05db17f3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRaMgWGtfQDdZupmaL5n8LcugtVBwo-shk_nSRuanTlKhb2-hXd3NuefCJeQJ2BKA2ddqH6tqyRmopZayLAW_IQurjTUGpBIW2C2ZcVBQcMv1PXlI6YcxxSyIGVlt-sM0_mFL-2OXY5Gy2yEdhy4OSPtxiHmc4rCjKU8u4-5EwzjRxmW_p-eex5QeyV1wXcLFNefk-_3tq_ootp_rTbXaFpEzkwuFQlnFSye8boI1bRuY9xyEC045L7WQXKBtZIk6gCq1lloJ3Xom2wZ0EHPycvGed3-PmHLdx-Sx69yA4zHVYISU1lpmzujzBY2IWB-m2LvpVF_PEf8oMVjd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1835599908</pqid></control><display><type>conference_proceeding</type><title>Improved multi-stage online monitoring strategy for batch process</title><source>IEEE Xplore All Conference Series</source><creator>Li, Chunlei ; Wang, Pu ; Gao, Xuejin</creator><creatorcontrib>Li, Chunlei ; Wang, Pu ; Gao, Xuejin</creatorcontrib><description>In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is executed. According to the criterion of minimum similarity distances, time-slice matrices are sorted to realize separation of operation sub-stage more particularly for batch process. The two-step separation method considers evolvement of the underlying process behavior. Therefore, the method can accurately divide the stages. Finally, multi-way principal component analysis (MPCA) model is established for each phase and applied to on-line monitoring for batch process. The proposed method is applied to penicillin fermentation process, the simulation results show that the multistage-based MPCA method has better performance, compared with the traditional MPCA.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISSN: 1934-1768</identifier><identifier>EISBN: 9789881563910</identifier><identifier>EISBN: 9881563917</identifier><identifier>DOI: 10.1109/ChiCC.2016.7554432</identifier><language>eng</language><publisher>TCCT</publisher><subject>batch process ; Batch production systems ; Computer simulation ; Conferences ; Criteria ; Data models ; Fermentation ; Load modeling ; Monitoring ; operation stage separation ; Principal component analysis ; principal component analysis (PCA) ; Separation ; Similarity ; Solid modeling ; Strategy</subject><ispartof>2016 35th Chinese Control Conference (CCC), 2016, p.6832-6836</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7554432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7554432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Chunlei</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Gao, Xuejin</creatorcontrib><title>Improved multi-stage online monitoring strategy for batch process</title><title>2016 35th Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is executed. According to the criterion of minimum similarity distances, time-slice matrices are sorted to realize separation of operation sub-stage more particularly for batch process. The two-step separation method considers evolvement of the underlying process behavior. Therefore, the method can accurately divide the stages. Finally, multi-way principal component analysis (MPCA) model is established for each phase and applied to on-line monitoring for batch process. The proposed method is applied to penicillin fermentation process, the simulation results show that the multistage-based MPCA method has better performance, compared with the traditional MPCA.</description><subject>batch process</subject><subject>Batch production systems</subject><subject>Computer simulation</subject><subject>Conferences</subject><subject>Criteria</subject><subject>Data models</subject><subject>Fermentation</subject><subject>Load modeling</subject><subject>Monitoring</subject><subject>operation stage separation</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Separation</subject><subject>Similarity</subject><subject>Solid modeling</subject><subject>Strategy</subject><issn>2161-2927</issn><issn>1934-1768</issn><isbn>9789881563910</isbn><isbn>9881563917</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEYRaMgWGtfQDdZupmaL5n8LcugtVBwo-shk_nSRuanTlKhb2-hXd3NuefCJeQJ2BKA2ddqH6tqyRmopZayLAW_IQurjTUGpBIW2C2ZcVBQcMv1PXlI6YcxxSyIGVlt-sM0_mFL-2OXY5Gy2yEdhy4OSPtxiHmc4rCjKU8u4-5EwzjRxmW_p-eex5QeyV1wXcLFNefk-_3tq_ootp_rTbXaFpEzkwuFQlnFSye8boI1bRuY9xyEC045L7WQXKBtZIk6gCq1lloJ3Xom2wZ0EHPycvGed3-PmHLdx-Sx69yA4zHVYISU1lpmzujzBY2IWB-m2LvpVF_PEf8oMVjd</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Li, Chunlei</creator><creator>Wang, Pu</creator><creator>Gao, Xuejin</creator><general>TCCT</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Improved multi-stage online monitoring strategy for batch process</title><author>Li, Chunlei ; Wang, Pu ; Gao, Xuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-6e369624a3c7bf98ddf0cc213afa6ac573523e9b54e7f1647757637dc05db17f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>batch process</topic><topic>Batch production systems</topic><topic>Computer simulation</topic><topic>Conferences</topic><topic>Criteria</topic><topic>Data models</topic><topic>Fermentation</topic><topic>Load modeling</topic><topic>Monitoring</topic><topic>operation stage separation</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Separation</topic><topic>Similarity</topic><topic>Solid modeling</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunlei</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Gao, Xuejin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Chunlei</au><au>Wang, Pu</au><au>Gao, Xuejin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved multi-stage online monitoring strategy for batch process</atitle><btitle>2016 35th Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2016-07-01</date><risdate>2016</risdate><spage>6832</spage><epage>6836</epage><pages>6832-6836</pages><eissn>2161-2927</eissn><eissn>1934-1768</eissn><eisbn>9789881563910</eisbn><eisbn>9881563917</eisbn><abstract>In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is executed. According to the criterion of minimum similarity distances, time-slice matrices are sorted to realize separation of operation sub-stage more particularly for batch process. The two-step separation method considers evolvement of the underlying process behavior. Therefore, the method can accurately divide the stages. Finally, multi-way principal component analysis (MPCA) model is established for each phase and applied to on-line monitoring for batch process. The proposed method is applied to penicillin fermentation process, the simulation results show that the multistage-based MPCA method has better performance, compared with the traditional MPCA.</abstract><pub>TCCT</pub><doi>10.1109/ChiCC.2016.7554432</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-2927
ispartof 2016 35th Chinese Control Conference (CCC), 2016, p.6832-6836
issn 2161-2927
1934-1768
language eng
recordid cdi_proquest_miscellaneous_1835599908
source IEEE Xplore All Conference Series
subjects batch process
Batch production systems
Computer simulation
Conferences
Criteria
Data models
Fermentation
Load modeling
Monitoring
operation stage separation
Principal component analysis
principal component analysis (PCA)
Separation
Similarity
Solid modeling
Strategy
title Improved multi-stage online monitoring strategy for batch process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20multi-stage%20online%20monitoring%20strategy%20for%20batch%20process&rft.btitle=2016%2035th%20Chinese%20Control%20Conference%20(CCC)&rft.au=Li,%20Chunlei&rft.date=2016-07-01&rft.spage=6832&rft.epage=6836&rft.pages=6832-6836&rft.eissn=2161-2927&rft_id=info:doi/10.1109/ChiCC.2016.7554432&rft.eisbn=9789881563910&rft.eisbn_list=9881563917&rft_dat=%3Cproquest_CHZPO%3E1835599908%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-6e369624a3c7bf98ddf0cc213afa6ac573523e9b54e7f1647757637dc05db17f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835599908&rft_id=info:pmid/&rft_ieee_id=7554432&rfr_iscdi=true