Loading…
Improved multi-stage online monitoring strategy for batch process
In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is exe...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6836 |
container_issue | |
container_start_page | 6832 |
container_title | |
container_volume | |
creator | Li, Chunlei Wang, Pu Gao, Xuejin |
description | In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is executed. According to the criterion of minimum similarity distances, time-slice matrices are sorted to realize separation of operation sub-stage more particularly for batch process. The two-step separation method considers evolvement of the underlying process behavior. Therefore, the method can accurately divide the stages. Finally, multi-way principal component analysis (MPCA) model is established for each phase and applied to on-line monitoring for batch process. The proposed method is applied to penicillin fermentation process, the simulation results show that the multistage-based MPCA method has better performance, compared with the traditional MPCA. |
doi_str_mv | 10.1109/ChiCC.2016.7554432 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835599908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7554432</ieee_id><sourcerecordid>1835599908</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-6e369624a3c7bf98ddf0cc213afa6ac573523e9b54e7f1647757637dc05db17f3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRaMgWGtfQDdZupmaL5n8LcugtVBwo-shk_nSRuanTlKhb2-hXd3NuefCJeQJ2BKA2ddqH6tqyRmopZayLAW_IQurjTUGpBIW2C2ZcVBQcMv1PXlI6YcxxSyIGVlt-sM0_mFL-2OXY5Gy2yEdhy4OSPtxiHmc4rCjKU8u4-5EwzjRxmW_p-eex5QeyV1wXcLFNefk-_3tq_ootp_rTbXaFpEzkwuFQlnFSye8boI1bRuY9xyEC045L7WQXKBtZIk6gCq1lloJ3Xom2wZ0EHPycvGed3-PmHLdx-Sx69yA4zHVYISU1lpmzujzBY2IWB-m2LvpVF_PEf8oMVjd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1835599908</pqid></control><display><type>conference_proceeding</type><title>Improved multi-stage online monitoring strategy for batch process</title><source>IEEE Xplore All Conference Series</source><creator>Li, Chunlei ; Wang, Pu ; Gao, Xuejin</creator><creatorcontrib>Li, Chunlei ; Wang, Pu ; Gao, Xuejin</creatorcontrib><description>In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is executed. According to the criterion of minimum similarity distances, time-slice matrices are sorted to realize separation of operation sub-stage more particularly for batch process. The two-step separation method considers evolvement of the underlying process behavior. Therefore, the method can accurately divide the stages. Finally, multi-way principal component analysis (MPCA) model is established for each phase and applied to on-line monitoring for batch process. The proposed method is applied to penicillin fermentation process, the simulation results show that the multistage-based MPCA method has better performance, compared with the traditional MPCA.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISSN: 1934-1768</identifier><identifier>EISBN: 9789881563910</identifier><identifier>EISBN: 9881563917</identifier><identifier>DOI: 10.1109/ChiCC.2016.7554432</identifier><language>eng</language><publisher>TCCT</publisher><subject>batch process ; Batch production systems ; Computer simulation ; Conferences ; Criteria ; Data models ; Fermentation ; Load modeling ; Monitoring ; operation stage separation ; Principal component analysis ; principal component analysis (PCA) ; Separation ; Similarity ; Solid modeling ; Strategy</subject><ispartof>2016 35th Chinese Control Conference (CCC), 2016, p.6832-6836</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7554432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7554432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Chunlei</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Gao, Xuejin</creatorcontrib><title>Improved multi-stage online monitoring strategy for batch process</title><title>2016 35th Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is executed. According to the criterion of minimum similarity distances, time-slice matrices are sorted to realize separation of operation sub-stage more particularly for batch process. The two-step separation method considers evolvement of the underlying process behavior. Therefore, the method can accurately divide the stages. Finally, multi-way principal component analysis (MPCA) model is established for each phase and applied to on-line monitoring for batch process. The proposed method is applied to penicillin fermentation process, the simulation results show that the multistage-based MPCA method has better performance, compared with the traditional MPCA.</description><subject>batch process</subject><subject>Batch production systems</subject><subject>Computer simulation</subject><subject>Conferences</subject><subject>Criteria</subject><subject>Data models</subject><subject>Fermentation</subject><subject>Load modeling</subject><subject>Monitoring</subject><subject>operation stage separation</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Separation</subject><subject>Similarity</subject><subject>Solid modeling</subject><subject>Strategy</subject><issn>2161-2927</issn><issn>1934-1768</issn><isbn>9789881563910</isbn><isbn>9881563917</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEYRaMgWGtfQDdZupmaL5n8LcugtVBwo-shk_nSRuanTlKhb2-hXd3NuefCJeQJ2BKA2ddqH6tqyRmopZayLAW_IQurjTUGpBIW2C2ZcVBQcMv1PXlI6YcxxSyIGVlt-sM0_mFL-2OXY5Gy2yEdhy4OSPtxiHmc4rCjKU8u4-5EwzjRxmW_p-eex5QeyV1wXcLFNefk-_3tq_ootp_rTbXaFpEzkwuFQlnFSye8boI1bRuY9xyEC045L7WQXKBtZIk6gCq1lloJ3Xom2wZ0EHPycvGed3-PmHLdx-Sx69yA4zHVYISU1lpmzujzBY2IWB-m2LvpVF_PEf8oMVjd</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Li, Chunlei</creator><creator>Wang, Pu</creator><creator>Gao, Xuejin</creator><general>TCCT</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Improved multi-stage online monitoring strategy for batch process</title><author>Li, Chunlei ; Wang, Pu ; Gao, Xuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-6e369624a3c7bf98ddf0cc213afa6ac573523e9b54e7f1647757637dc05db17f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>batch process</topic><topic>Batch production systems</topic><topic>Computer simulation</topic><topic>Conferences</topic><topic>Criteria</topic><topic>Data models</topic><topic>Fermentation</topic><topic>Load modeling</topic><topic>Monitoring</topic><topic>operation stage separation</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Separation</topic><topic>Similarity</topic><topic>Solid modeling</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunlei</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Gao, Xuejin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Chunlei</au><au>Wang, Pu</au><au>Gao, Xuejin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved multi-stage online monitoring strategy for batch process</atitle><btitle>2016 35th Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2016-07-01</date><risdate>2016</risdate><spage>6832</spage><epage>6836</epage><pages>6832-6836</pages><eissn>2161-2927</eissn><eissn>1934-1768</eissn><eisbn>9789881563910</eisbn><eisbn>9881563917</eisbn><abstract>In order to accurately divide the stages and improve the sensitivity of fault diagnosis, a new method is proposed for the sub-stage separation of batch process. First, based on the changes in the load matrices, which reveal the change of data direction, rough separation of operation sub-stage is executed. According to the criterion of minimum similarity distances, time-slice matrices are sorted to realize separation of operation sub-stage more particularly for batch process. The two-step separation method considers evolvement of the underlying process behavior. Therefore, the method can accurately divide the stages. Finally, multi-way principal component analysis (MPCA) model is established for each phase and applied to on-line monitoring for batch process. The proposed method is applied to penicillin fermentation process, the simulation results show that the multistage-based MPCA method has better performance, compared with the traditional MPCA.</abstract><pub>TCCT</pub><doi>10.1109/ChiCC.2016.7554432</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-2927 |
ispartof | 2016 35th Chinese Control Conference (CCC), 2016, p.6832-6836 |
issn | 2161-2927 1934-1768 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835599908 |
source | IEEE Xplore All Conference Series |
subjects | batch process Batch production systems Computer simulation Conferences Criteria Data models Fermentation Load modeling Monitoring operation stage separation Principal component analysis principal component analysis (PCA) Separation Similarity Solid modeling Strategy |
title | Improved multi-stage online monitoring strategy for batch process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20multi-stage%20online%20monitoring%20strategy%20for%20batch%20process&rft.btitle=2016%2035th%20Chinese%20Control%20Conference%20(CCC)&rft.au=Li,%20Chunlei&rft.date=2016-07-01&rft.spage=6832&rft.epage=6836&rft.pages=6832-6836&rft.eissn=2161-2927&rft_id=info:doi/10.1109/ChiCC.2016.7554432&rft.eisbn=9789881563910&rft.eisbn_list=9881563917&rft_dat=%3Cproquest_CHZPO%3E1835599908%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-6e369624a3c7bf98ddf0cc213afa6ac573523e9b54e7f1647757637dc05db17f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835599908&rft_id=info:pmid/&rft_ieee_id=7554432&rfr_iscdi=true |