Loading…

Empirically based uncertainty factors for the pedigree matrix in ecoinvent

Purpose Ecoinvent applies a method for estimation of default standard deviations for flow data from characteristics of these flows and the respective processes that are turned into uncertainty factors in a pedigree matrix, starting from qualitative assessments. The uncertainty factors are aggregated...

Full description

Saved in:
Bibliographic Details
Published in:The international journal of life cycle assessment 2016-09, Vol.21 (9), p.1338-1348
Main Authors: Ciroth, Andreas, Muller, Stéphanie, Weidema, Bo, Lesage, Pascal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Ecoinvent applies a method for estimation of default standard deviations for flow data from characteristics of these flows and the respective processes that are turned into uncertainty factors in a pedigree matrix, starting from qualitative assessments. The uncertainty factors are aggregated to the standard deviation. This approach allows calculating uncertainties for all flows in the ecoinvent database. In ecoinvent 2 the uncertainty factors were provided based on expert judgment, without (documented) empirical foundation. This paper presents (1) a procedure to obtain an empirical foundation for the uncertainty factors that are used in the pedigree approach and (2) a proposal for new uncertainty factors, received by applying the developed procedure. Both the factors and the procedure are a result of a first phase of an ecoinvent project to refine the pedigree matrix approach. A separate paper in the same edition, also the result of the aforementioned project, deals with extending the developed approach to other probability distributions than lognormal (Muller et al.). Methods Uncertainty is defined here simply as geometric standard deviation (GSD) of intermediate and elementary exchanges at the unit process level. This fits to the lognormal probability distribution that is assumed as default in ecoinvent 2, and helps to overcome scaling effects in the analysed data. In order to provide the required empirical basis, a broad portfolio of data sources is analysed; it is especially important to consider sources outside of the ecoinvent database to avoid circular reasoning. The ecoinvent pedigree matrix from version 2 is taken as a starting point, skipping the indicator “sample size” since it will not be used in ecoinvent 3. This leads to a pedigree matrix with five data quality indicators, each having five score values. The analysis is conducted as follows: for each matrix indicator and for each data source, indicator scores are set in relation to data sets, building groups of data sets that represent the different data quality indicator scores in the pedigree matrix. The uncertainty in each of the groups is calculated. The uncertainty obtained for the group with the ideal indicator score is set as a reference, and uncertainties for the other groups are set in relation to this reference uncertainty. The obtained ratio will be different from 1, it represents the unexplained uncertainty, additional uncertainty due to a lower data quality, and can be dir
ISSN:0948-3349
1614-7502
DOI:10.1007/s11367-013-0670-5