Loading…
Estimation of the Drop Size in Dispersed Flow
The formulas for calculating the characteristic drop size for the mean Sauter diameter have been compared. The question on various forms of the size distribution of drops has been considered. To substantiate the applicability of the compared formulas for calculating the thermohydrodynamics in the ci...
Saved in:
Published in: | Journal of engineering physics and thermophysics 2016-07, Vol.89 (4), p.840-847 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formulas for calculating the characteristic drop size for the mean Sauter diameter have been compared. The question on various forms of the size distribution of drops has been considered. To substantiate the applicability of the compared formulas for calculating the thermohydrodynamics in the circuits of nuclear power plants, experimental data on the wall temperature in a dispersed flow have been used. It has been shown that the Sauter diameter values calculated using the wall temperature in the supercritical region are in good agreement with sparse direct measurements of the drop size in steam–water flows. The drop sizes calculated using the tested formulas obtained for two-component gas–liquid flows or for single-component flows of coolants (various kinds of freons) and liquefied nitrogen turned out to be much lower. It has been shown that it is necessary to recalculate the numerical coefficients in the considered formulas in using them for steam–water flows. |
---|---|
ISSN: | 1062-0125 1573-871X |
DOI: | 10.1007/s10891-016-1444-2 |