Loading…
A coupled meshfree-mesh-based solution scheme on hybrid grid for flow-induced vibrations
In this paper, a coupled meshfree-mesh-based fluid solver is employed for flow-induced vibration problems. The fluid domain comprises of a hybrid grid which is formed by generating a body conformal meshfree nodal cloud around the solid object and a static Cartesian grid which surrounds the meshfree...
Saved in:
Published in: | Acta mechanica 2016-08, Vol.227 (8), p.2245-2274 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a coupled meshfree-mesh-based fluid solver is employed for flow-induced vibration problems. The fluid domain comprises of a hybrid grid which is formed by generating a body conformal meshfree nodal cloud around the solid object and a static Cartesian grid which surrounds the meshfree cloud in the far field. The meshfree nodal cloud provides flexibility in dealing with solid motion by moving and morphing along with the solid boundary without necessitating re-meshing. The Cartesian grid, on the other hand, provides improved performance by allowing the use of a computationally efficient mesh-based method. The flow equations, in arbitrary Lagrangian–Eulerian formulation, are solved by a local radial basis function in finite difference mode on moving meshfree nodes. Conventional finite differencing is used over the static Cartesian grid for flow equations in Eulerian formulation. The equations for solid motion are solved using a classic Runge–Kutta method. Closed coupling is introduced between fluid and structural solvers by using a sub-iterative prediction–correction algorithm. In order to reduce computational overhead due to sub-iterations, only near-field flow (in the meshfree zone) is solved during the inner iterations. The full fluid domain is solved during outer (time step) iterations only when the convergence at the solid–fluid interface has already been reached. In the meshfree zone, adaptive sizing of the influence domain is introduced to maintain suitable number of neighbouring particles. The use of a hybrid grid has been found to be useful in improving the computational performance by faster computing over the Cartesian grid as well as by reducing the number of computations in the fluid domain during fluid–solid coupling. The solution scheme was tested for problems relating to flow-induced cylindrical and airfoil vibration with one and two degrees of freedom. The results are found to be in good agreement with previous work and experimental results. |
---|---|
ISSN: | 0001-5970 1619-6937 |
DOI: | 10.1007/s00707-016-1614-5 |