Loading…
High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a ro...
Saved in:
Published in: | Physical review letters 2016-08, Vol.117 (6), p.060504-060504, Article 060504 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8 μs and 520 μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.117.060504 |