Loading…

Preparation and Properties of Lightweight, High-Strength Insulation Materials Using Fly Ash Floating Beads

In our paper, to save energy conservation and environmental protection, and in view of waste fly ash floating bead with excellent properties such as light and refractory, lightweight insulation materials was prepared using fly ash floating beads as the main materials. Firstly, two different fly ash...

Full description

Saved in:
Bibliographic Details
Published in:Key Engineering Materials 2016-07, Vol.697, p.599-603
Main Authors: Dai, Ya Peng, Gu, Xing Yong, Dong, Wei Xia, Luo, Ting
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In our paper, to save energy conservation and environmental protection, and in view of waste fly ash floating bead with excellent properties such as light and refractory, lightweight insulation materials was prepared using fly ash floating beads as the main materials. Firstly, two different fly ash floating bead contents on the properties of the light and refractory material were investigated. Then, on the basis of the optimum fly ash floating bead content, effects of various different particle sizes and firing temperature on the bulk density, compressive strength and the heat conduction coefficients of the samples were studied. The microstructure of the light-weight refractory materials was characterized by XRD and SEM. The heat conduction coefficient (λ') of the samples were also measured by the self-made test instrument. The experimental results showed that the properties of the as-prepared sample using 80% fly ash floating beads was superior to that of 95 % fly ash floating beads. The optimal volume density of 0.60-1.04 g/cm3, compressive strength of 10.6-39.5 MPa and the heat conduction coefficient of 0.183-0.25 °C·g/ min·cm2 were achieved in the presence of 80% fly ash floating beads with 120-160 particle size at 1200°C-1300°C, which has the potential application in lightweight insulation materials.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.697.599