Loading…

GAMA/WiggleZ: the 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75

We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm s...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2016-07, Vol.460 (1), p.2-17
Main Authors: Pracy, Michael B., Ching, John H. Y., Sadler, Elaine M., Croom, Scott M., Baldry, I. K., Bland-Hawthorn, Joss, Brough, S., Brown, M. J. I., Couch, Warrick J., Davis, Tamara M., Drinkwater, Michael J., Hopkins, A. M., Jarvis, M. J., Jelliffe, Ben, Jurek, Russell J., Loveday, J., Pimbblet, K. A., Prescott, M., Wisnioski, Emily, Woods, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-ab997ff29f8adde8288f775f137ef064921ec08721d4c33cbd4f6a8410ecf0d23
cites cdi_FETCH-LOGICAL-c361t-ab997ff29f8adde8288f775f137ef064921ec08721d4c33cbd4f6a8410ecf0d23
container_end_page 17
container_issue 1
container_start_page 2
container_title Monthly notices of the Royal Astronomical Society
container_volume 460
creator Pracy, Michael B.
Ching, John H. Y.
Sadler, Elaine M.
Croom, Scott M.
Baldry, I. K.
Bland-Hawthorn, Joss
Brough, S.
Brown, M. J. I.
Couch, Warrick J.
Davis, Tamara M.
Drinkwater, Michael J.
Hopkins, A. M.
Jarvis, M. J.
Jelliffe, Ben
Jurek, Russell J.
Loveday, J.
Pimbblet, K. A.
Prescott, M.
Wisnioski, Emily
Woods, David
description We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey images. The radio AGN are separated into low-excitation radio galaxies (LERGs) and high-excitation radio galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z < 0.75). The radio luminosity functions can be well described by a double power law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as ${\sim } (1+z)^{0.06^{+0.17}_{-0.18}}$ assuming pure density evolution or ${\sim } (1+z)^{0.46^{+0.22}_{-0.24}}$ assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by ${\sim } (1+z)^{2.93^{+0.46}_{-0.47}}$ assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed, the best-fitting HERG evolution is parametrized by ${\sim } (1+z)^{7.41^{+0.79}_{-1.33}}$ . The characteristic break in the radio luminosity function occurs at a significantly higher power (≳1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes.
doi_str_mv 10.1093/mnras/stw910
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835606493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw910</oup_id><sourcerecordid>1835606493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ab997ff29f8adde8288f775f137ef064921ec08721d4c33cbd4f6a8410ecf0d23</originalsourceid><addsrcrecordid>eNqN0T9OwzAUBnALgUQpbBzAEgMMpLXjxHGQGKoKWqQiFhASS-Q6dusqjYvt0D834BachZORtJ0YEJOH93uf9PwBcI5RB6OUdOel5a7r_DLF6AC0MKFxEKaUHoIWQiQOWILxMThxboYQikhIW-Bz0HvsdV_1ZFLItxvopxLiTvT9NRhuoOW5NrCo5ro0Tvs1VFUpvDalg0bBqZ5MA8jLHBZmGciV0J43w_3ahBd8paXbijpWW2hl7qZaeSg_TFFtrTdwA28h6iTxKThSvHDybP-2wcv93XN_GIyeBg_93igQhGIf8HGaJkqFqWI8zyULGVNJEitMEqkQjdIQS4FYEuI8EoSIcR4pylmEkRQK5SFpg6td7sKa90o6n821E7IoeClN5TLMSEybIPIPipovTWNa04tfdGYqW9aHNCpiJInDuFbXOyWscc5KlS2snnO7zjDKmgqzbYXZrsKaX-64qRZ_yx_n2J46</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804837525</pqid></control><display><type>article</type><title>GAMA/WiggleZ: the 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75</title><source>Oxford Academic Journals (Open Access)</source><creator>Pracy, Michael B. ; Ching, John H. Y. ; Sadler, Elaine M. ; Croom, Scott M. ; Baldry, I. K. ; Bland-Hawthorn, Joss ; Brough, S. ; Brown, M. J. I. ; Couch, Warrick J. ; Davis, Tamara M. ; Drinkwater, Michael J. ; Hopkins, A. M. ; Jarvis, M. J. ; Jelliffe, Ben ; Jurek, Russell J. ; Loveday, J. ; Pimbblet, K. A. ; Prescott, M. ; Wisnioski, Emily ; Woods, David</creator><creatorcontrib>Pracy, Michael B. ; Ching, John H. Y. ; Sadler, Elaine M. ; Croom, Scott M. ; Baldry, I. K. ; Bland-Hawthorn, Joss ; Brough, S. ; Brown, M. J. I. ; Couch, Warrick J. ; Davis, Tamara M. ; Drinkwater, Michael J. ; Hopkins, A. M. ; Jarvis, M. J. ; Jelliffe, Ben ; Jurek, Russell J. ; Loveday, J. ; Pimbblet, K. A. ; Prescott, M. ; Wisnioski, Emily ; Woods, David</creatorcontrib><description><![CDATA[We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey images. The radio AGN are separated into low-excitation radio galaxies (LERGs) and high-excitation radio galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z < 0.75). The radio luminosity functions can be well described by a double power law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as ${\sim } (1+z)^{0.06^{+0.17}_{-0.18}}$ assuming pure density evolution or ${\sim } (1+z)^{0.46^{+0.22}_{-0.24}}$ assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by ${\sim } (1+z)^{2.93^{+0.46}_{-0.47}}$ assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed, the best-fitting HERG evolution is parametrized by ${\sim } (1+z)^{7.41^{+0.79}_{-1.33}}$ . The characteristic break in the radio luminosity function occurs at a significantly higher power (≳1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes.]]></description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw910</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Accretion disks ; Active galactic nuclei ; Comparative analysis ; Evolution ; Luminosity ; Mathematical models ; Radio ; Radio galaxies ; Red shift ; Star &amp; galaxy formation</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-07, Vol.460 (1), p.2-17</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Jul 21, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ab997ff29f8adde8288f775f137ef064921ec08721d4c33cbd4f6a8410ecf0d23</citedby><cites>FETCH-LOGICAL-c361t-ab997ff29f8adde8288f775f137ef064921ec08721d4c33cbd4f6a8410ecf0d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw910$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Pracy, Michael B.</creatorcontrib><creatorcontrib>Ching, John H. Y.</creatorcontrib><creatorcontrib>Sadler, Elaine M.</creatorcontrib><creatorcontrib>Croom, Scott M.</creatorcontrib><creatorcontrib>Baldry, I. K.</creatorcontrib><creatorcontrib>Bland-Hawthorn, Joss</creatorcontrib><creatorcontrib>Brough, S.</creatorcontrib><creatorcontrib>Brown, M. J. I.</creatorcontrib><creatorcontrib>Couch, Warrick J.</creatorcontrib><creatorcontrib>Davis, Tamara M.</creatorcontrib><creatorcontrib>Drinkwater, Michael J.</creatorcontrib><creatorcontrib>Hopkins, A. M.</creatorcontrib><creatorcontrib>Jarvis, M. J.</creatorcontrib><creatorcontrib>Jelliffe, Ben</creatorcontrib><creatorcontrib>Jurek, Russell J.</creatorcontrib><creatorcontrib>Loveday, J.</creatorcontrib><creatorcontrib>Pimbblet, K. A.</creatorcontrib><creatorcontrib>Prescott, M.</creatorcontrib><creatorcontrib>Wisnioski, Emily</creatorcontrib><creatorcontrib>Woods, David</creatorcontrib><title>GAMA/WiggleZ: the 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75</title><title>Monthly notices of the Royal Astronomical Society</title><description><![CDATA[We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey images. The radio AGN are separated into low-excitation radio galaxies (LERGs) and high-excitation radio galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z < 0.75). The radio luminosity functions can be well described by a double power law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as ${\sim } (1+z)^{0.06^{+0.17}_{-0.18}}$ assuming pure density evolution or ${\sim } (1+z)^{0.46^{+0.22}_{-0.24}}$ assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by ${\sim } (1+z)^{2.93^{+0.46}_{-0.47}}$ assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed, the best-fitting HERG evolution is parametrized by ${\sim } (1+z)^{7.41^{+0.79}_{-1.33}}$ . The characteristic break in the radio luminosity function occurs at a significantly higher power (≳1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes.]]></description><subject>Accretion disks</subject><subject>Active galactic nuclei</subject><subject>Comparative analysis</subject><subject>Evolution</subject><subject>Luminosity</subject><subject>Mathematical models</subject><subject>Radio</subject><subject>Radio galaxies</subject><subject>Red shift</subject><subject>Star &amp; galaxy formation</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0T9OwzAUBnALgUQpbBzAEgMMpLXjxHGQGKoKWqQiFhASS-Q6dusqjYvt0D834BachZORtJ0YEJOH93uf9PwBcI5RB6OUdOel5a7r_DLF6AC0MKFxEKaUHoIWQiQOWILxMThxboYQikhIW-Bz0HvsdV_1ZFLItxvopxLiTvT9NRhuoOW5NrCo5ro0Tvs1VFUpvDalg0bBqZ5MA8jLHBZmGciV0J43w_3ahBd8paXbijpWW2hl7qZaeSg_TFFtrTdwA28h6iTxKThSvHDybP-2wcv93XN_GIyeBg_93igQhGIf8HGaJkqFqWI8zyULGVNJEitMEqkQjdIQS4FYEuI8EoSIcR4pylmEkRQK5SFpg6td7sKa90o6n821E7IoeClN5TLMSEybIPIPipovTWNa04tfdGYqW9aHNCpiJInDuFbXOyWscc5KlS2snnO7zjDKmgqzbYXZrsKaX-64qRZ_yx_n2J46</recordid><startdate>20160721</startdate><enddate>20160721</enddate><creator>Pracy, Michael B.</creator><creator>Ching, John H. Y.</creator><creator>Sadler, Elaine M.</creator><creator>Croom, Scott M.</creator><creator>Baldry, I. K.</creator><creator>Bland-Hawthorn, Joss</creator><creator>Brough, S.</creator><creator>Brown, M. J. I.</creator><creator>Couch, Warrick J.</creator><creator>Davis, Tamara M.</creator><creator>Drinkwater, Michael J.</creator><creator>Hopkins, A. M.</creator><creator>Jarvis, M. J.</creator><creator>Jelliffe, Ben</creator><creator>Jurek, Russell J.</creator><creator>Loveday, J.</creator><creator>Pimbblet, K. A.</creator><creator>Prescott, M.</creator><creator>Wisnioski, Emily</creator><creator>Woods, David</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20160721</creationdate><title>GAMA/WiggleZ: the 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75</title><author>Pracy, Michael B. ; Ching, John H. Y. ; Sadler, Elaine M. ; Croom, Scott M. ; Baldry, I. K. ; Bland-Hawthorn, Joss ; Brough, S. ; Brown, M. J. I. ; Couch, Warrick J. ; Davis, Tamara M. ; Drinkwater, Michael J. ; Hopkins, A. M. ; Jarvis, M. J. ; Jelliffe, Ben ; Jurek, Russell J. ; Loveday, J. ; Pimbblet, K. A. ; Prescott, M. ; Wisnioski, Emily ; Woods, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ab997ff29f8adde8288f775f137ef064921ec08721d4c33cbd4f6a8410ecf0d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accretion disks</topic><topic>Active galactic nuclei</topic><topic>Comparative analysis</topic><topic>Evolution</topic><topic>Luminosity</topic><topic>Mathematical models</topic><topic>Radio</topic><topic>Radio galaxies</topic><topic>Red shift</topic><topic>Star &amp; galaxy formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pracy, Michael B.</creatorcontrib><creatorcontrib>Ching, John H. Y.</creatorcontrib><creatorcontrib>Sadler, Elaine M.</creatorcontrib><creatorcontrib>Croom, Scott M.</creatorcontrib><creatorcontrib>Baldry, I. K.</creatorcontrib><creatorcontrib>Bland-Hawthorn, Joss</creatorcontrib><creatorcontrib>Brough, S.</creatorcontrib><creatorcontrib>Brown, M. J. I.</creatorcontrib><creatorcontrib>Couch, Warrick J.</creatorcontrib><creatorcontrib>Davis, Tamara M.</creatorcontrib><creatorcontrib>Drinkwater, Michael J.</creatorcontrib><creatorcontrib>Hopkins, A. M.</creatorcontrib><creatorcontrib>Jarvis, M. J.</creatorcontrib><creatorcontrib>Jelliffe, Ben</creatorcontrib><creatorcontrib>Jurek, Russell J.</creatorcontrib><creatorcontrib>Loveday, J.</creatorcontrib><creatorcontrib>Pimbblet, K. A.</creatorcontrib><creatorcontrib>Prescott, M.</creatorcontrib><creatorcontrib>Wisnioski, Emily</creatorcontrib><creatorcontrib>Woods, David</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pracy, Michael B.</au><au>Ching, John H. Y.</au><au>Sadler, Elaine M.</au><au>Croom, Scott M.</au><au>Baldry, I. K.</au><au>Bland-Hawthorn, Joss</au><au>Brough, S.</au><au>Brown, M. J. I.</au><au>Couch, Warrick J.</au><au>Davis, Tamara M.</au><au>Drinkwater, Michael J.</au><au>Hopkins, A. M.</au><au>Jarvis, M. J.</au><au>Jelliffe, Ben</au><au>Jurek, Russell J.</au><au>Loveday, J.</au><au>Pimbblet, K. A.</au><au>Prescott, M.</au><au>Wisnioski, Emily</au><au>Woods, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GAMA/WiggleZ: the 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-07-21</date><risdate>2016</risdate><volume>460</volume><issue>1</issue><spage>2</spage><epage>17</epage><pages>2-17</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract><![CDATA[We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey images. The radio AGN are separated into low-excitation radio galaxies (LERGs) and high-excitation radio galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z < 0.75). The radio luminosity functions can be well described by a double power law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as ${\sim } (1+z)^{0.06^{+0.17}_{-0.18}}$ assuming pure density evolution or ${\sim } (1+z)^{0.46^{+0.22}_{-0.24}}$ assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by ${\sim } (1+z)^{2.93^{+0.46}_{-0.47}}$ assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed, the best-fitting HERG evolution is parametrized by ${\sim } (1+z)^{7.41^{+0.79}_{-1.33}}$ . The characteristic break in the radio luminosity function occurs at a significantly higher power (≳1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes.]]></abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw910</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2016-07, Vol.460 (1), p.2-17
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1835606493
source Oxford Academic Journals (Open Access)
subjects Accretion disks
Active galactic nuclei
Comparative analysis
Evolution
Luminosity
Mathematical models
Radio
Radio galaxies
Red shift
Star & galaxy formation
title GAMA/WiggleZ: the 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GAMA/WiggleZ:%20the%201.4%C2%A0GHz%20radio%20luminosity%20functions%20of%20high-%20and%20low-excitation%20radio%20galaxies%20and%20their%20redshift%20evolution%20to%20z%20=%200.75&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Pracy,%20Michael%20B.&rft.date=2016-07-21&rft.volume=460&rft.issue=1&rft.spage=2&rft.epage=17&rft.pages=2-17&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw910&rft_dat=%3Cproquest_TOX%3E1835606493%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-ab997ff29f8adde8288f775f137ef064921ec08721d4c33cbd4f6a8410ecf0d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1804837525&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw910&rfr_iscdi=true