Loading…

Implement tracking algorithm using CNNs

Convolutional neural networks (CNNs) is widely used as classifiers in the field of computer vision. The more complex a CNNs model is, the more accurate classification results will be. But a very deep network also requires a better GPU to train and test in a reasonable time. In this paper, we purpose...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Chaoran, Xi, Yuling, Ding, Songtao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7141
container_issue
container_start_page 7137
container_title
container_volume
creator Li, Chaoran
Xi, Yuling
Ding, Songtao
description Convolutional neural networks (CNNs) is widely used as classifiers in the field of computer vision. The more complex a CNNs model is, the more accurate classification results will be. But a very deep network also requires a better GPU to train and test in a reasonable time. In this paper, we purpose a tracking algorithm using LeNet-5, and avoid computing complex handcrafted features from the raw inputs. Modifying the number of kernels improves the tracking accuracy of models, avoid over-fitting. The experiment of processing a video clip meets real-time requirement while using GPU and it shows our algorithm is more robust than traditional algorithm like particle filter to track single target under the complicated background.
doi_str_mv 10.1109/ChiCC.2016.7554485
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835609444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7554485</ieee_id><sourcerecordid>1835609444</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-6701ea903b0d0d3500088e65dafd57d37d51849cdcf3e57a5e0e645573348ff93</originalsourceid><addsrcrecordid>eNotkMtOwzAURA0SEqX0B2CTHWwSrmNfP5Yo4lGpKhtYRya-aQ15EScL_p6idjUa6ehoNIzdcMg4B_tQ7ENRZDlwlWlEKQ2esZXVxhrDUQnL4Zwtcq54mttcX7KrGL8AFFguFuxu3Q4NtdRNyTS66jt0u8Q1u34M075N5vjfi-02XrOL2jWRVqdcso_np_fiNd28vayLx00acjBTqjRwchbEJ3jwAgHAGFLoXe1Re6E9ciNt5ataEGqHBKQkohZCmrq2Ysnuj95h7H9milPZhlhR07iO-jmW3Ag8TJdSHtDbIxqIqBzG0LrxtzxdIP4ATJVOBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1835609444</pqid></control><display><type>conference_proceeding</type><title>Implement tracking algorithm using CNNs</title><source>IEEE Xplore All Conference Series</source><creator>Li, Chaoran ; Xi, Yuling ; Ding, Songtao</creator><creatorcontrib>Li, Chaoran ; Xi, Yuling ; Ding, Songtao</creatorcontrib><description>Convolutional neural networks (CNNs) is widely used as classifiers in the field of computer vision. The more complex a CNNs model is, the more accurate classification results will be. But a very deep network also requires a better GPU to train and test in a reasonable time. In this paper, we purpose a tracking algorithm using LeNet-5, and avoid computing complex handcrafted features from the raw inputs. Modifying the number of kernels improves the tracking accuracy of models, avoid over-fitting. The experiment of processing a video clip meets real-time requirement while using GPU and it shows our algorithm is more robust than traditional algorithm like particle filter to track single target under the complicated background.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISSN: 1934-1768</identifier><identifier>EISBN: 9789881563910</identifier><identifier>EISBN: 9881563917</identifier><identifier>DOI: 10.1109/ChiCC.2016.7554485</identifier><language>eng</language><publisher>TCCT</publisher><subject>Algorithm design and analysis ; Algorithms ; Classification ; Computational modeling ; Computer vision ; Conferences ; Convolutional Neural Networks ; Feature extraction ; Graphics processing units ; Kernels ; Neural networks ; Object Tracking ; Target tracking ; Tracking ; Visualization</subject><ispartof>2016 35th Chinese Control Conference (CCC), 2016, p.7137-7141</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7554485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,27901,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7554485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Chaoran</creatorcontrib><creatorcontrib>Xi, Yuling</creatorcontrib><creatorcontrib>Ding, Songtao</creatorcontrib><title>Implement tracking algorithm using CNNs</title><title>2016 35th Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>Convolutional neural networks (CNNs) is widely used as classifiers in the field of computer vision. The more complex a CNNs model is, the more accurate classification results will be. But a very deep network also requires a better GPU to train and test in a reasonable time. In this paper, we purpose a tracking algorithm using LeNet-5, and avoid computing complex handcrafted features from the raw inputs. Modifying the number of kernels improves the tracking accuracy of models, avoid over-fitting. The experiment of processing a video clip meets real-time requirement while using GPU and it shows our algorithm is more robust than traditional algorithm like particle filter to track single target under the complicated background.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Convolutional Neural Networks</subject><subject>Feature extraction</subject><subject>Graphics processing units</subject><subject>Kernels</subject><subject>Neural networks</subject><subject>Object Tracking</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Visualization</subject><issn>2161-2927</issn><issn>1934-1768</issn><isbn>9789881563910</isbn><isbn>9881563917</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURA0SEqX0B2CTHWwSrmNfP5Yo4lGpKhtYRya-aQ15EScL_p6idjUa6ehoNIzdcMg4B_tQ7ENRZDlwlWlEKQ2esZXVxhrDUQnL4Zwtcq54mttcX7KrGL8AFFguFuxu3Q4NtdRNyTS66jt0u8Q1u34M075N5vjfi-02XrOL2jWRVqdcso_np_fiNd28vayLx00acjBTqjRwchbEJ3jwAgHAGFLoXe1Re6E9ciNt5ataEGqHBKQkohZCmrq2Ysnuj95h7H9milPZhlhR07iO-jmW3Ag8TJdSHtDbIxqIqBzG0LrxtzxdIP4ATJVOBg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Li, Chaoran</creator><creator>Xi, Yuling</creator><creator>Ding, Songtao</creator><general>TCCT</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Implement tracking algorithm using CNNs</title><author>Li, Chaoran ; Xi, Yuling ; Ding, Songtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-6701ea903b0d0d3500088e65dafd57d37d51849cdcf3e57a5e0e645573348ff93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Convolutional Neural Networks</topic><topic>Feature extraction</topic><topic>Graphics processing units</topic><topic>Kernels</topic><topic>Neural networks</topic><topic>Object Tracking</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Chaoran</creatorcontrib><creatorcontrib>Xi, Yuling</creatorcontrib><creatorcontrib>Ding, Songtao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Chaoran</au><au>Xi, Yuling</au><au>Ding, Songtao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implement tracking algorithm using CNNs</atitle><btitle>2016 35th Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2016-07-01</date><risdate>2016</risdate><spage>7137</spage><epage>7141</epage><pages>7137-7141</pages><eissn>2161-2927</eissn><eissn>1934-1768</eissn><eisbn>9789881563910</eisbn><eisbn>9881563917</eisbn><abstract>Convolutional neural networks (CNNs) is widely used as classifiers in the field of computer vision. The more complex a CNNs model is, the more accurate classification results will be. But a very deep network also requires a better GPU to train and test in a reasonable time. In this paper, we purpose a tracking algorithm using LeNet-5, and avoid computing complex handcrafted features from the raw inputs. Modifying the number of kernels improves the tracking accuracy of models, avoid over-fitting. The experiment of processing a video clip meets real-time requirement while using GPU and it shows our algorithm is more robust than traditional algorithm like particle filter to track single target under the complicated background.</abstract><pub>TCCT</pub><doi>10.1109/ChiCC.2016.7554485</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-2927
ispartof 2016 35th Chinese Control Conference (CCC), 2016, p.7137-7141
issn 2161-2927
1934-1768
language eng
recordid cdi_proquest_miscellaneous_1835609444
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Algorithms
Classification
Computational modeling
Computer vision
Conferences
Convolutional Neural Networks
Feature extraction
Graphics processing units
Kernels
Neural networks
Object Tracking
Target tracking
Tracking
Visualization
title Implement tracking algorithm using CNNs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implement%20tracking%20algorithm%20using%20CNNs&rft.btitle=2016%2035th%20Chinese%20Control%20Conference%20(CCC)&rft.au=Li,%20Chaoran&rft.date=2016-07-01&rft.spage=7137&rft.epage=7141&rft.pages=7137-7141&rft.eissn=2161-2927&rft_id=info:doi/10.1109/ChiCC.2016.7554485&rft.eisbn=9789881563910&rft.eisbn_list=9881563917&rft_dat=%3Cproquest_CHZPO%3E1835609444%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-6701ea903b0d0d3500088e65dafd57d37d51849cdcf3e57a5e0e645573348ff93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835609444&rft_id=info:pmid/&rft_ieee_id=7554485&rfr_iscdi=true