Loading…
Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery
Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range‐wide peak snow volume was characterized by a return period of over 600 years...
Saved in:
Published in: | Geophysical research letters 2016-06, Vol.43 (12), p.6341-6349 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4382-4a660b88c297bb52cb1f98bd0936eb9fd8e2cb39cb4917bca1dfdd1c1ef0b70f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4382-4a660b88c297bb52cb1f98bd0936eb9fd8e2cb39cb4917bca1dfdd1c1ef0b70f3 |
container_end_page | 6349 |
container_issue | 12 |
container_start_page | 6341 |
container_title | Geophysical research letters |
container_volume | 43 |
creator | Margulis, Steven A. Cortés, Gonzalo Girotto, Manuela Huning, Laurie S. Li, Dongyue Durand, Michael |
description | Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range‐wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ −22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Niño conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.
Key Points
The 2015 Sierra Nevada range‐wide snow volume was characterized by a return period of over 600 years with a strong elevational gradient
The accumulated snowpack drought deficit volume ending in 2015 was the largest over the 65 year record analyzed
Despite historically strong 2016 El Nino conditions, it is highly likely that recovery to predrought conditions will take about 4 years |
doi_str_mv | 10.1002/2016GL068520 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835613264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931356450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4382-4a660b88c297bb52cb1f98bd0936eb9fd8e2cb39cb4917bca1dfdd1c1ef0b70f3</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuAgCq7VO39AwJsKrp58zExyWZa6FRYFa6-HfJx0U2cnazLTuv76xq4X4kXxKoechzeEl5DXDN4zAP6BA2vXG2hVw-EJWTAt5VIBdE_JAkDXmXftc_KilBsAECDYgsyrrcnGTZjjrzhe02mLFH9OGXdIa1xDy5ju9sZ9px5DdHGicXxAlxFzNvQz3hpv6OnV5dlbakb_sIu7_RCdmWIaCw0pU5_TfL2daEaXbjEfXpJnwQwFX_05T8jVx_Nvq4vl5sv60-pss3RSKL6Upm3BKuW47qxtuLMsaGU9aNGi1cErrHdCOys166wzzAfvmWMYwHYQxAk5Pebuc_oxY5n6XSwOh8GMmObSMyWalgneyv-goDrQTdtV-uYfepPmPNaP9EwLViNlA48qBUJzIRmv6t1RuZxKyRj6fY47kw89g_53qf3fpVbOj_wuDnh41Pbrr5tGyvrOPTs_oR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803923412</pqid></control><display><type>article</type><title>Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Margulis, Steven A. ; Cortés, Gonzalo ; Girotto, Manuela ; Huning, Laurie S. ; Li, Dongyue ; Durand, Michael</creator><creatorcontrib>Margulis, Steven A. ; Cortés, Gonzalo ; Girotto, Manuela ; Huning, Laurie S. ; Li, Dongyue ; Durand, Michael</creatorcontrib><description>Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range‐wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ −22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Niño conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.
Key Points
The 2015 Sierra Nevada range‐wide snow volume was characterized by a return period of over 600 years with a strong elevational gradient
The accumulated snowpack drought deficit volume ending in 2015 was the largest over the 65 year record analyzed
Despite historically strong 2016 El Nino conditions, it is highly likely that recovery to predrought conditions will take about 4 years</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL068520</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Computer simulation ; Confidence intervals ; Data ; Drought ; Droughts ; El Nino ; El Nino phenomena ; Elevation ; Extreme weather ; Meteorology ; Monte Carlo simulation ; Recovery ; Simulation ; Snow ; Snow accumulation ; Snowpack ; Statistical methods ; water supply</subject><ispartof>Geophysical research letters, 2016-06, Vol.43 (12), p.6341-6349</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4382-4a660b88c297bb52cb1f98bd0936eb9fd8e2cb39cb4917bca1dfdd1c1ef0b70f3</citedby><cites>FETCH-LOGICAL-c4382-4a660b88c297bb52cb1f98bd0936eb9fd8e2cb39cb4917bca1dfdd1c1ef0b70f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL068520$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL068520$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Margulis, Steven A.</creatorcontrib><creatorcontrib>Cortés, Gonzalo</creatorcontrib><creatorcontrib>Girotto, Manuela</creatorcontrib><creatorcontrib>Huning, Laurie S.</creatorcontrib><creatorcontrib>Li, Dongyue</creatorcontrib><creatorcontrib>Durand, Michael</creatorcontrib><title>Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery</title><title>Geophysical research letters</title><description>Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range‐wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ −22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Niño conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.
Key Points
The 2015 Sierra Nevada range‐wide snow volume was characterized by a return period of over 600 years with a strong elevational gradient
The accumulated snowpack drought deficit volume ending in 2015 was the largest over the 65 year record analyzed
Despite historically strong 2016 El Nino conditions, it is highly likely that recovery to predrought conditions will take about 4 years</description><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Data</subject><subject>Drought</subject><subject>Droughts</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Elevation</subject><subject>Extreme weather</subject><subject>Meteorology</subject><subject>Monte Carlo simulation</subject><subject>Recovery</subject><subject>Simulation</subject><subject>Snow</subject><subject>Snow accumulation</subject><subject>Snowpack</subject><subject>Statistical methods</subject><subject>water supply</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0V1rFDEUBuAgCq7VO39AwJsKrp58zExyWZa6FRYFa6-HfJx0U2cnazLTuv76xq4X4kXxKoechzeEl5DXDN4zAP6BA2vXG2hVw-EJWTAt5VIBdE_JAkDXmXftc_KilBsAECDYgsyrrcnGTZjjrzhe02mLFH9OGXdIa1xDy5ju9sZ9px5DdHGicXxAlxFzNvQz3hpv6OnV5dlbakb_sIu7_RCdmWIaCw0pU5_TfL2daEaXbjEfXpJnwQwFX_05T8jVx_Nvq4vl5sv60-pss3RSKL6Upm3BKuW47qxtuLMsaGU9aNGi1cErrHdCOys166wzzAfvmWMYwHYQxAk5Pebuc_oxY5n6XSwOh8GMmObSMyWalgneyv-goDrQTdtV-uYfepPmPNaP9EwLViNlA48qBUJzIRmv6t1RuZxKyRj6fY47kw89g_53qf3fpVbOj_wuDnh41Pbrr5tGyvrOPTs_oR8</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Margulis, Steven A.</creator><creator>Cortés, Gonzalo</creator><creator>Girotto, Manuela</creator><creator>Huning, Laurie S.</creator><creator>Li, Dongyue</creator><creator>Durand, Michael</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20160628</creationdate><title>Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery</title><author>Margulis, Steven A. ; Cortés, Gonzalo ; Girotto, Manuela ; Huning, Laurie S. ; Li, Dongyue ; Durand, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4382-4a660b88c297bb52cb1f98bd0936eb9fd8e2cb39cb4917bca1dfdd1c1ef0b70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Data</topic><topic>Drought</topic><topic>Droughts</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Elevation</topic><topic>Extreme weather</topic><topic>Meteorology</topic><topic>Monte Carlo simulation</topic><topic>Recovery</topic><topic>Simulation</topic><topic>Snow</topic><topic>Snow accumulation</topic><topic>Snowpack</topic><topic>Statistical methods</topic><topic>water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margulis, Steven A.</creatorcontrib><creatorcontrib>Cortés, Gonzalo</creatorcontrib><creatorcontrib>Girotto, Manuela</creatorcontrib><creatorcontrib>Huning, Laurie S.</creatorcontrib><creatorcontrib>Li, Dongyue</creatorcontrib><creatorcontrib>Durand, Michael</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margulis, Steven A.</au><au>Cortés, Gonzalo</au><au>Girotto, Manuela</au><au>Huning, Laurie S.</au><au>Li, Dongyue</au><au>Durand, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery</atitle><jtitle>Geophysical research letters</jtitle><date>2016-06-28</date><risdate>2016</risdate><volume>43</volume><issue>12</issue><spage>6341</spage><epage>6349</epage><pages>6341-6349</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range‐wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ −22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Niño conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.
Key Points
The 2015 Sierra Nevada range‐wide snow volume was characterized by a return period of over 600 years with a strong elevational gradient
The accumulated snowpack drought deficit volume ending in 2015 was the largest over the 65 year record analyzed
Despite historically strong 2016 El Nino conditions, it is highly likely that recovery to predrought conditions will take about 4 years</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016GL068520</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2016-06, Vol.43 (12), p.6341-6349 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835613264 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Computer simulation Confidence intervals Data Drought Droughts El Nino El Nino phenomena Elevation Extreme weather Meteorology Monte Carlo simulation Recovery Simulation Snow Snow accumulation Snowpack Statistical methods water supply |
title | Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20the%20extreme%202015%20snowpack%20deficit%20in%20the%20Sierra%20Nevada%20(USA)%20and%20the%20implications%20for%20drought%20recovery&rft.jtitle=Geophysical%20research%20letters&rft.au=Margulis,%20Steven%20A.&rft.date=2016-06-28&rft.volume=43&rft.issue=12&rft.spage=6341&rft.epage=6349&rft.pages=6341-6349&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL068520&rft_dat=%3Cproquest_cross%3E1931356450%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4382-4a660b88c297bb52cb1f98bd0936eb9fd8e2cb39cb4917bca1dfdd1c1ef0b70f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1803923412&rft_id=info:pmid/&rfr_iscdi=true |