Loading…
A stopping criterion for multi-objective optimization evolutionary algorithms
This paper puts forward a comprehensive study of the design of global stopping criteria for multi-objective optimization. In this study we propose a global stopping criterion, which is terms as MGBM after the authors surnames. MGBM combines a novel progress indicator, called mutual domination rate (...
Saved in:
Published in: | Information sciences 2016-11, Vol.367-368, p.700-718 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper puts forward a comprehensive study of the design of global stopping criteria for multi-objective optimization. In this study we propose a global stopping criterion, which is terms as MGBM after the authors surnames. MGBM combines a novel progress indicator, called mutual domination rate (MDR) indicator, with a simplified Kalman filter, which is used for evidence-gathering purposes. The MDR indicator, which is also introduced, is a special-purpose progress indicator designed for the purpose of stopping a multi-objective optimization. As part of the paper we describe the criterion from a theoretical perspective and examine its performance on a number of test problems. We also compare this method with similar approaches to the issue. The results of these experiments suggest that MGBM is a valid and accurate approach. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/j.ins.2016.07.025 |