Loading…
Pullout strength of graphene and carbon nanotube/epoxy composites
An atomistic multiscale modelling approach is used to simulate the nonlinear pullout behaviour of interlinked single walled carbon nano tubes (SWCNT) and single layer graphene sheets (SLGS) embedded in an epoxy polymer. The pullout forces have been computed for various configurations of nanocomposit...
Saved in:
Published in: | Composites. Part B, Engineering Engineering, 2016-10, Vol.102, p.1-8 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An atomistic multiscale modelling approach is used to simulate the nonlinear pullout behaviour of interlinked single walled carbon nano tubes (SWCNT) and single layer graphene sheets (SLGS) embedded in an epoxy polymer. The pullout forces have been computed for various configurations of nanocomposites (SWCNT-SWCNT, SLGS-SLGS and hybrid SLGS-SWCNT), also by evaluating the effect provided by three different interlink compounds. The interfacial strength due to fibre pullout predicted by the hybrid atomistic-FE model is compared against experimental and molecular dynamics results available in open literature. The results show the specific deformation characteristics (localised auxetics) that provide an increase of pullout forces and interfacial strength with the use of the links. |
---|---|
ISSN: | 1359-8368 1879-1069 |
DOI: | 10.1016/j.compositesb.2016.06.070 |