Loading…

Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding

Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents fo...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2016-10, Vol.56 (10), p.1153-1159
Main Authors: Sáiz, Luciana M., Orofino, Antonela B., Rodríguez, Exequiel S., Zucchi, Ileana A., Williams, Roberto J. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43
cites cdi_FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43
container_end_page 1159
container_issue 10
container_start_page 1153
container_title Polymer engineering and science
container_volume 56
creator Sáiz, Luciana M.
Orofino, Antonela B.
Rodríguez, Exequiel S.
Zucchi, Ileana A.
Williams, Roberto J. J.
description Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents for thermoset composites. However, their use in epoxy formulations for filament winding, requiring low viscosities during the fiber‐impregnation step associated with an adequate glass transition temperature of the cured product is not trivial. In this study, we show that a blend of diglycidylether of bisphenol A (DGEBA), 4,4′‐diamino‐3,3′‐dimethyldicyclohexylmethane (3DCM) and benzylamine (BA), with 20% of amine hydrogens provided by BA, and containing 5 wt% MAM, can be used for these purposes. The addition of MAM increased the critical stress intensity factor from 0.63 MPa.m1/2 to 1.0 MPa.m1/2, the glass transition temperature from 138°C to 145°C, and the glassy modulus at 25°C from 2.95 GPa to 3.15 GPa. MAM was a better choice for the envisaged applications than MAM‐N because it led to solutions of lower viscosity. The higher viscosity produced by MAM‐N was explained by specific interactions between the epoxy‐amine solvent and DMA units present in its terminal blocks. POLYM. ENG. SCI., 56:1153–1159, 2016. © 2016 Society of Plastics Engineers
doi_str_mv 10.1002/pen.24348
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835628723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A464981077</galeid><sourcerecordid>A464981077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43</originalsourceid><addsrcrecordid>eNp10l1r1EAUBuAgCq6tF_6DgDcKZjtfSSaXpWxrpaxi1V7JMJmcxGknM-lMQpt_72y3fqysBCY3z_tyOJwkeYXREiNEjgawS8Io40-SBc4Zz0hB2dNkgRAlGeWcP09ehHCNoqV5tUi-rwZ3P6et8_1k5KidTbVVZmq07VJpU6n8bLRKR69r49RNqtzgzNyDT2UjhxGaTTadAsRc2moje7BjeqftpuEwedZKE-Dl4_8g-Xq6-nLyPrv4eHZ-cnyRqZzFGXmhAENBcRyKVXlNSoxJTuuyzGVL2grXHPO2LmnOSwaSl5Qx1LQ15AWhSDF6kLzZ9g7e3U4QRtHroMAYacFNQWBOI-UloZG-_odeu8nbOF1UuIjdsf2P6qQBoW3rRi_VplQcs4JVHKOyjCrbozqw4KVxFuI6YNcv9_j4NdBrtTfwdicQzQj3YyenEMT55edd--4vW09BWwjxCbr7MYZtZF-18i4ED60YvO6lnwVGYnNKIp6SeDilaI-29i7ON_8fik-r9a_E42Z0iAP_Tkh_I4q44Vxcrc_Eh29rUp1eVuKK_gTx-dW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816873734</pqid></control><display><type>article</type><title>Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding</title><source>Wiley</source><creator>Sáiz, Luciana M. ; Orofino, Antonela B. ; Rodríguez, Exequiel S. ; Zucchi, Ileana A. ; Williams, Roberto J. J.</creator><creatorcontrib>Sáiz, Luciana M. ; Orofino, Antonela B. ; Rodríguez, Exequiel S. ; Zucchi, Ileana A. ; Williams, Roberto J. J.</creatorcontrib><description>Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents for thermoset composites. However, their use in epoxy formulations for filament winding, requiring low viscosities during the fiber‐impregnation step associated with an adequate glass transition temperature of the cured product is not trivial. In this study, we show that a blend of diglycidylether of bisphenol A (DGEBA), 4,4′‐diamino‐3,3′‐dimethyldicyclohexylmethane (3DCM) and benzylamine (BA), with 20% of amine hydrogens provided by BA, and containing 5 wt% MAM, can be used for these purposes. The addition of MAM increased the critical stress intensity factor from 0.63 MPa.m1/2 to 1.0 MPa.m1/2, the glass transition temperature from 138°C to 145°C, and the glassy modulus at 25°C from 2.95 GPa to 3.15 GPa. MAM was a better choice for the envisaged applications than MAM‐N because it led to solutions of lower viscosity. The higher viscosity produced by MAM‐N was explained by specific interactions between the epoxy‐amine solvent and DMA units present in its terminal blocks. POLYM. ENG. SCI., 56:1153–1159, 2016. © 2016 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.24348</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Newtown: Blackwell Publishing Ltd</publisher><subject>Bisphenol A ; Block copolymers ; Chemical properties ; Chemical synthesis ; Filament winding ; Filament wound construction ; Formulations ; Glass transition temperature ; Methods ; Polymethyl methacrylates ; Polymethylmethacrylate ; Production processes ; Viscosity</subject><ispartof>Polymer engineering and science, 2016-10, Vol.56 (10), p.1153-1159</ispartof><rights>2016 Society of Plastics Engineers</rights><rights>COPYRIGHT 2016 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43</citedby><cites>FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sáiz, Luciana M.</creatorcontrib><creatorcontrib>Orofino, Antonela B.</creatorcontrib><creatorcontrib>Rodríguez, Exequiel S.</creatorcontrib><creatorcontrib>Zucchi, Ileana A.</creatorcontrib><creatorcontrib>Williams, Roberto J. J.</creatorcontrib><title>Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents for thermoset composites. However, their use in epoxy formulations for filament winding, requiring low viscosities during the fiber‐impregnation step associated with an adequate glass transition temperature of the cured product is not trivial. In this study, we show that a blend of diglycidylether of bisphenol A (DGEBA), 4,4′‐diamino‐3,3′‐dimethyldicyclohexylmethane (3DCM) and benzylamine (BA), with 20% of amine hydrogens provided by BA, and containing 5 wt% MAM, can be used for these purposes. The addition of MAM increased the critical stress intensity factor from 0.63 MPa.m1/2 to 1.0 MPa.m1/2, the glass transition temperature from 138°C to 145°C, and the glassy modulus at 25°C from 2.95 GPa to 3.15 GPa. MAM was a better choice for the envisaged applications than MAM‐N because it led to solutions of lower viscosity. The higher viscosity produced by MAM‐N was explained by specific interactions between the epoxy‐amine solvent and DMA units present in its terminal blocks. POLYM. ENG. SCI., 56:1153–1159, 2016. © 2016 Society of Plastics Engineers</description><subject>Bisphenol A</subject><subject>Block copolymers</subject><subject>Chemical properties</subject><subject>Chemical synthesis</subject><subject>Filament winding</subject><subject>Filament wound construction</subject><subject>Formulations</subject><subject>Glass transition temperature</subject><subject>Methods</subject><subject>Polymethyl methacrylates</subject><subject>Polymethylmethacrylate</subject><subject>Production processes</subject><subject>Viscosity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10l1r1EAUBuAgCq6tF_6DgDcKZjtfSSaXpWxrpaxi1V7JMJmcxGknM-lMQpt_72y3fqysBCY3z_tyOJwkeYXREiNEjgawS8Io40-SBc4Zz0hB2dNkgRAlGeWcP09ehHCNoqV5tUi-rwZ3P6et8_1k5KidTbVVZmq07VJpU6n8bLRKR69r49RNqtzgzNyDT2UjhxGaTTadAsRc2moje7BjeqftpuEwedZKE-Dl4_8g-Xq6-nLyPrv4eHZ-cnyRqZzFGXmhAENBcRyKVXlNSoxJTuuyzGVL2grXHPO2LmnOSwaSl5Qx1LQ15AWhSDF6kLzZ9g7e3U4QRtHroMAYacFNQWBOI-UloZG-_odeu8nbOF1UuIjdsf2P6qQBoW3rRi_VplQcs4JVHKOyjCrbozqw4KVxFuI6YNcv9_j4NdBrtTfwdicQzQj3YyenEMT55edd--4vW09BWwjxCbr7MYZtZF-18i4ED60YvO6lnwVGYnNKIp6SeDilaI-29i7ON_8fik-r9a_E42Z0iAP_Tkh_I4q44Vxcrc_Eh29rUp1eVuKK_gTx-dW4</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Sáiz, Luciana M.</creator><creator>Orofino, Antonela B.</creator><creator>Rodríguez, Exequiel S.</creator><creator>Zucchi, Ileana A.</creator><creator>Williams, Roberto J. J.</creator><general>Blackwell Publishing Ltd</general><general>Society of Plastics Engineers, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201610</creationdate><title>Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding</title><author>Sáiz, Luciana M. ; Orofino, Antonela B. ; Rodríguez, Exequiel S. ; Zucchi, Ileana A. ; Williams, Roberto J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bisphenol A</topic><topic>Block copolymers</topic><topic>Chemical properties</topic><topic>Chemical synthesis</topic><topic>Filament winding</topic><topic>Filament wound construction</topic><topic>Formulations</topic><topic>Glass transition temperature</topic><topic>Methods</topic><topic>Polymethyl methacrylates</topic><topic>Polymethylmethacrylate</topic><topic>Production processes</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sáiz, Luciana M.</creatorcontrib><creatorcontrib>Orofino, Antonela B.</creatorcontrib><creatorcontrib>Rodríguez, Exequiel S.</creatorcontrib><creatorcontrib>Zucchi, Ileana A.</creatorcontrib><creatorcontrib>Williams, Roberto J. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sáiz, Luciana M.</au><au>Orofino, Antonela B.</au><au>Rodríguez, Exequiel S.</au><au>Zucchi, Ileana A.</au><au>Williams, Roberto J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2016-10</date><risdate>2016</risdate><volume>56</volume><issue>10</issue><spage>1153</spage><epage>1159</epage><pages>1153-1159</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents for thermoset composites. However, their use in epoxy formulations for filament winding, requiring low viscosities during the fiber‐impregnation step associated with an adequate glass transition temperature of the cured product is not trivial. In this study, we show that a blend of diglycidylether of bisphenol A (DGEBA), 4,4′‐diamino‐3,3′‐dimethyldicyclohexylmethane (3DCM) and benzylamine (BA), with 20% of amine hydrogens provided by BA, and containing 5 wt% MAM, can be used for these purposes. The addition of MAM increased the critical stress intensity factor from 0.63 MPa.m1/2 to 1.0 MPa.m1/2, the glass transition temperature from 138°C to 145°C, and the glassy modulus at 25°C from 2.95 GPa to 3.15 GPa. MAM was a better choice for the envisaged applications than MAM‐N because it led to solutions of lower viscosity. The higher viscosity produced by MAM‐N was explained by specific interactions between the epoxy‐amine solvent and DMA units present in its terminal blocks. POLYM. ENG. SCI., 56:1153–1159, 2016. © 2016 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pen.24348</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2016-10, Vol.56 (10), p.1153-1159
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_1835628723
source Wiley
subjects Bisphenol A
Block copolymers
Chemical properties
Chemical synthesis
Filament winding
Filament wound construction
Formulations
Glass transition temperature
Methods
Polymethyl methacrylates
Polymethylmethacrylate
Production processes
Viscosity
title Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epoxy%20formulation%20including%20an%20acrylic%20triblock%20copolymer%20adapted%20for%20use%20in%20filament%20winding&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=S%C3%A1iz,%20Luciana%20M.&rft.date=2016-10&rft.volume=56&rft.issue=10&rft.spage=1153&rft.epage=1159&rft.pages=1153-1159&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.24348&rft_dat=%3Cgale_proqu%3EA464981077%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816873734&rft_id=info:pmid/&rft_galeid=A464981077&rfr_iscdi=true