Loading…
Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding
Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents fo...
Saved in:
Published in: | Polymer engineering and science 2016-10, Vol.56 (10), p.1153-1159 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43 |
container_end_page | 1159 |
container_issue | 10 |
container_start_page | 1153 |
container_title | Polymer engineering and science |
container_volume | 56 |
creator | Sáiz, Luciana M. Orofino, Antonela B. Rodríguez, Exequiel S. Zucchi, Ileana A. Williams, Roberto J. J. |
description | Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents for thermoset composites. However, their use in epoxy formulations for filament winding, requiring low viscosities during the fiber‐impregnation step associated with an adequate glass transition temperature of the cured product is not trivial. In this study, we show that a blend of diglycidylether of bisphenol A (DGEBA), 4,4′‐diamino‐3,3′‐dimethyldicyclohexylmethane (3DCM) and benzylamine (BA), with 20% of amine hydrogens provided by BA, and containing 5 wt% MAM, can be used for these purposes. The addition of MAM increased the critical stress intensity factor from 0.63 MPa.m1/2 to 1.0 MPa.m1/2, the glass transition temperature from 138°C to 145°C, and the glassy modulus at 25°C from 2.95 GPa to 3.15 GPa. MAM was a better choice for the envisaged applications than MAM‐N because it led to solutions of lower viscosity. The higher viscosity produced by MAM‐N was explained by specific interactions between the epoxy‐amine solvent and DMA units present in its terminal blocks. POLYM. ENG. SCI., 56:1153–1159, 2016. © 2016 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.24348 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835628723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A464981077</galeid><sourcerecordid>A464981077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43</originalsourceid><addsrcrecordid>eNp10l1r1EAUBuAgCq6tF_6DgDcKZjtfSSaXpWxrpaxi1V7JMJmcxGknM-lMQpt_72y3fqysBCY3z_tyOJwkeYXREiNEjgawS8Io40-SBc4Zz0hB2dNkgRAlGeWcP09ehHCNoqV5tUi-rwZ3P6et8_1k5KidTbVVZmq07VJpU6n8bLRKR69r49RNqtzgzNyDT2UjhxGaTTadAsRc2moje7BjeqftpuEwedZKE-Dl4_8g-Xq6-nLyPrv4eHZ-cnyRqZzFGXmhAENBcRyKVXlNSoxJTuuyzGVL2grXHPO2LmnOSwaSl5Qx1LQ15AWhSDF6kLzZ9g7e3U4QRtHroMAYacFNQWBOI-UloZG-_odeu8nbOF1UuIjdsf2P6qQBoW3rRi_VplQcs4JVHKOyjCrbozqw4KVxFuI6YNcv9_j4NdBrtTfwdicQzQj3YyenEMT55edd--4vW09BWwjxCbr7MYZtZF-18i4ED60YvO6lnwVGYnNKIp6SeDilaI-29i7ON_8fik-r9a_E42Z0iAP_Tkh_I4q44Vxcrc_Eh29rUp1eVuKK_gTx-dW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816873734</pqid></control><display><type>article</type><title>Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding</title><source>Wiley</source><creator>Sáiz, Luciana M. ; Orofino, Antonela B. ; Rodríguez, Exequiel S. ; Zucchi, Ileana A. ; Williams, Roberto J. J.</creator><creatorcontrib>Sáiz, Luciana M. ; Orofino, Antonela B. ; Rodríguez, Exequiel S. ; Zucchi, Ileana A. ; Williams, Roberto J. J.</creatorcontrib><description>Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents for thermoset composites. However, their use in epoxy formulations for filament winding, requiring low viscosities during the fiber‐impregnation step associated with an adequate glass transition temperature of the cured product is not trivial. In this study, we show that a blend of diglycidylether of bisphenol A (DGEBA), 4,4′‐diamino‐3,3′‐dimethyldicyclohexylmethane (3DCM) and benzylamine (BA), with 20% of amine hydrogens provided by BA, and containing 5 wt% MAM, can be used for these purposes. The addition of MAM increased the critical stress intensity factor from 0.63 MPa.m1/2 to 1.0 MPa.m1/2, the glass transition temperature from 138°C to 145°C, and the glassy modulus at 25°C from 2.95 GPa to 3.15 GPa. MAM was a better choice for the envisaged applications than MAM‐N because it led to solutions of lower viscosity. The higher viscosity produced by MAM‐N was explained by specific interactions between the epoxy‐amine solvent and DMA units present in its terminal blocks. POLYM. ENG. SCI., 56:1153–1159, 2016. © 2016 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.24348</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Newtown: Blackwell Publishing Ltd</publisher><subject>Bisphenol A ; Block copolymers ; Chemical properties ; Chemical synthesis ; Filament winding ; Filament wound construction ; Formulations ; Glass transition temperature ; Methods ; Polymethyl methacrylates ; Polymethylmethacrylate ; Production processes ; Viscosity</subject><ispartof>Polymer engineering and science, 2016-10, Vol.56 (10), p.1153-1159</ispartof><rights>2016 Society of Plastics Engineers</rights><rights>COPYRIGHT 2016 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43</citedby><cites>FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sáiz, Luciana M.</creatorcontrib><creatorcontrib>Orofino, Antonela B.</creatorcontrib><creatorcontrib>Rodríguez, Exequiel S.</creatorcontrib><creatorcontrib>Zucchi, Ileana A.</creatorcontrib><creatorcontrib>Williams, Roberto J. J.</creatorcontrib><title>Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents for thermoset composites. However, their use in epoxy formulations for filament winding, requiring low viscosities during the fiber‐impregnation step associated with an adequate glass transition temperature of the cured product is not trivial. In this study, we show that a blend of diglycidylether of bisphenol A (DGEBA), 4,4′‐diamino‐3,3′‐dimethyldicyclohexylmethane (3DCM) and benzylamine (BA), with 20% of amine hydrogens provided by BA, and containing 5 wt% MAM, can be used for these purposes. The addition of MAM increased the critical stress intensity factor from 0.63 MPa.m1/2 to 1.0 MPa.m1/2, the glass transition temperature from 138°C to 145°C, and the glassy modulus at 25°C from 2.95 GPa to 3.15 GPa. MAM was a better choice for the envisaged applications than MAM‐N because it led to solutions of lower viscosity. The higher viscosity produced by MAM‐N was explained by specific interactions between the epoxy‐amine solvent and DMA units present in its terminal blocks. POLYM. ENG. SCI., 56:1153–1159, 2016. © 2016 Society of Plastics Engineers</description><subject>Bisphenol A</subject><subject>Block copolymers</subject><subject>Chemical properties</subject><subject>Chemical synthesis</subject><subject>Filament winding</subject><subject>Filament wound construction</subject><subject>Formulations</subject><subject>Glass transition temperature</subject><subject>Methods</subject><subject>Polymethyl methacrylates</subject><subject>Polymethylmethacrylate</subject><subject>Production processes</subject><subject>Viscosity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10l1r1EAUBuAgCq6tF_6DgDcKZjtfSSaXpWxrpaxi1V7JMJmcxGknM-lMQpt_72y3fqysBCY3z_tyOJwkeYXREiNEjgawS8Io40-SBc4Zz0hB2dNkgRAlGeWcP09ehHCNoqV5tUi-rwZ3P6et8_1k5KidTbVVZmq07VJpU6n8bLRKR69r49RNqtzgzNyDT2UjhxGaTTadAsRc2moje7BjeqftpuEwedZKE-Dl4_8g-Xq6-nLyPrv4eHZ-cnyRqZzFGXmhAENBcRyKVXlNSoxJTuuyzGVL2grXHPO2LmnOSwaSl5Qx1LQ15AWhSDF6kLzZ9g7e3U4QRtHroMAYacFNQWBOI-UloZG-_odeu8nbOF1UuIjdsf2P6qQBoW3rRi_VplQcs4JVHKOyjCrbozqw4KVxFuI6YNcv9_j4NdBrtTfwdicQzQj3YyenEMT55edd--4vW09BWwjxCbr7MYZtZF-18i4ED60YvO6lnwVGYnNKIp6SeDilaI-29i7ON_8fik-r9a_E42Z0iAP_Tkh_I4q44Vxcrc_Eh29rUp1eVuKK_gTx-dW4</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Sáiz, Luciana M.</creator><creator>Orofino, Antonela B.</creator><creator>Rodríguez, Exequiel S.</creator><creator>Zucchi, Ileana A.</creator><creator>Williams, Roberto J. J.</creator><general>Blackwell Publishing Ltd</general><general>Society of Plastics Engineers, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201610</creationdate><title>Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding</title><author>Sáiz, Luciana M. ; Orofino, Antonela B. ; Rodríguez, Exequiel S. ; Zucchi, Ileana A. ; Williams, Roberto J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bisphenol A</topic><topic>Block copolymers</topic><topic>Chemical properties</topic><topic>Chemical synthesis</topic><topic>Filament winding</topic><topic>Filament wound construction</topic><topic>Formulations</topic><topic>Glass transition temperature</topic><topic>Methods</topic><topic>Polymethyl methacrylates</topic><topic>Polymethylmethacrylate</topic><topic>Production processes</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sáiz, Luciana M.</creatorcontrib><creatorcontrib>Orofino, Antonela B.</creatorcontrib><creatorcontrib>Rodríguez, Exequiel S.</creatorcontrib><creatorcontrib>Zucchi, Ileana A.</creatorcontrib><creatorcontrib>Williams, Roberto J. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sáiz, Luciana M.</au><au>Orofino, Antonela B.</au><au>Rodríguez, Exequiel S.</au><au>Zucchi, Ileana A.</au><au>Williams, Roberto J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2016-10</date><risdate>2016</risdate><volume>56</volume><issue>10</issue><spage>1153</spage><epage>1159</epage><pages>1153-1159</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Commercial triblock copolymers with a poly(butyl acrylate) (PBuA) central block joined to two poly(methyl methacrylate) (PMMA) end blocks (denoted as MAM) or to two random copolymers end blocks based on MMA and N,N′‐dimethylacrylamide (DMA) (denoted as MAM‐N), can be employed as toughening agents for thermoset composites. However, their use in epoxy formulations for filament winding, requiring low viscosities during the fiber‐impregnation step associated with an adequate glass transition temperature of the cured product is not trivial. In this study, we show that a blend of diglycidylether of bisphenol A (DGEBA), 4,4′‐diamino‐3,3′‐dimethyldicyclohexylmethane (3DCM) and benzylamine (BA), with 20% of amine hydrogens provided by BA, and containing 5 wt% MAM, can be used for these purposes. The addition of MAM increased the critical stress intensity factor from 0.63 MPa.m1/2 to 1.0 MPa.m1/2, the glass transition temperature from 138°C to 145°C, and the glassy modulus at 25°C from 2.95 GPa to 3.15 GPa. MAM was a better choice for the envisaged applications than MAM‐N because it led to solutions of lower viscosity. The higher viscosity produced by MAM‐N was explained by specific interactions between the epoxy‐amine solvent and DMA units present in its terminal blocks. POLYM. ENG. SCI., 56:1153–1159, 2016. © 2016 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pen.24348</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2016-10, Vol.56 (10), p.1153-1159 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835628723 |
source | Wiley |
subjects | Bisphenol A Block copolymers Chemical properties Chemical synthesis Filament winding Filament wound construction Formulations Glass transition temperature Methods Polymethyl methacrylates Polymethylmethacrylate Production processes Viscosity |
title | Epoxy formulation including an acrylic triblock copolymer adapted for use in filament winding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epoxy%20formulation%20including%20an%20acrylic%20triblock%20copolymer%20adapted%20for%20use%20in%20filament%20winding&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=S%C3%A1iz,%20Luciana%20M.&rft.date=2016-10&rft.volume=56&rft.issue=10&rft.spage=1153&rft.epage=1159&rft.pages=1153-1159&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.24348&rft_dat=%3Cgale_proqu%3EA464981077%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5448-86ce1e631023495b2711253b775af2f91b818fb735874ea873440dfbe56230c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816873734&rft_id=info:pmid/&rft_galeid=A464981077&rfr_iscdi=true |