Loading…

Visual navigation for mobile robot with Kinect camera in dynamic environment

To solve the problem of the visual navigation for mobile robot in dynamic environment, a visual navigation system for mobile robot with Kinect camera is designed. Firstly, the improved RBPF (RAO Blackwellized particle filters) algorithm is used to build the 2D grid map of the indoor environment and...

Full description

Saved in:
Bibliographic Details
Main Authors: Xin, Jing, Jiao, Xiao-Liang, Yang, Yin, Liu, Ding
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4764
container_issue
container_start_page 4757
container_title
container_volume
creator Xin, Jing
Jiao, Xiao-Liang
Yang, Yin
Liu, Ding
description To solve the problem of the visual navigation for mobile robot in dynamic environment, a visual navigation system for mobile robot with Kinect camera is designed. Firstly, the improved RBPF (RAO Blackwellized particle filters) algorithm is used to build the 2D grid map of the indoor environment and on the basis of this map, operation of inflating obstacles is applied to build the global grid map considering the actual size of the robot. Secondly, cost map using motion primitives is built while using this cost map, anytime Repairing A*(ARA*) global path planning algorithm, which has property of anytime algorithm, is combined with Dynamic Window Approach (DWA ) local path planning algorithm to plan a smooth path from start point to target point and generate the optimal control input for robot motion. Finally, the adaptive monte carlo localization method (KLD-Sampling) is used to locate the robot and then a visual navigation system for mobile robot with Kinect camera is designed. The indoor mobile robot navigation experiment results show that the designed robot navigation system can plan a smooth path which is in accordance with robot kinematics and autonomously avoid the static and moving obstacles in the environment.
doi_str_mv 10.1109/ChiCC.2016.7554091
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835629060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7554091</ieee_id><sourcerecordid>1835629060</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-cc60d443807b6837aeb8d82738a07b4acd3e43f73eca2f6bf71a1bebd584824d3</originalsourceid><addsrcrecordid>eNotkEtLxDAYRaMgOI7zB3STpZvWvJrHUoovHHCjbkuSfnUibTK2mZH59xZmVhcuhwP3InRDSUkpMff1JtR1yQiVpaoqQQw9QyujtNGaVpIbSs7RglFJC2aYukRX0_RDiJw5vkDrrzDtbI-j3Ydvm0OKuEsjHpILPeAxuZTxX8gb_BYi-Iy9HWC0OETcHqIdgscQ92FMcYCYr9FFZ_sJVqdcos-nx4_6pVi_P7_WD-siMKJz4b0krRBcE-Wk5sqC061mims7N8L6loPgneLgLeuk6xS11IFrKy00Ey1forujdzum3x1MuRnC5KHvbYS0mxqqeSWZmTfO6O0RDQDQbMcw2PHQnH7i_39aXPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1835629060</pqid></control><display><type>conference_proceeding</type><title>Visual navigation for mobile robot with Kinect camera in dynamic environment</title><source>IEEE Xplore All Conference Series</source><creator>Xin, Jing ; Jiao, Xiao-Liang ; Yang, Yin ; Liu, Ding</creator><creatorcontrib>Xin, Jing ; Jiao, Xiao-Liang ; Yang, Yin ; Liu, Ding</creatorcontrib><description>To solve the problem of the visual navigation for mobile robot in dynamic environment, a visual navigation system for mobile robot with Kinect camera is designed. Firstly, the improved RBPF (RAO Blackwellized particle filters) algorithm is used to build the 2D grid map of the indoor environment and on the basis of this map, operation of inflating obstacles is applied to build the global grid map considering the actual size of the robot. Secondly, cost map using motion primitives is built while using this cost map, anytime Repairing A*(ARA*) global path planning algorithm, which has property of anytime algorithm, is combined with Dynamic Window Approach (DWA ) local path planning algorithm to plan a smooth path from start point to target point and generate the optimal control input for robot motion. Finally, the adaptive monte carlo localization method (KLD-Sampling) is used to locate the robot and then a visual navigation system for mobile robot with Kinect camera is designed. The indoor mobile robot navigation experiment results show that the designed robot navigation system can plan a smooth path which is in accordance with robot kinematics and autonomously avoid the static and moving obstacles in the environment.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISSN: 1934-1768</identifier><identifier>EISBN: 9789881563910</identifier><identifier>EISBN: 9881563917</identifier><identifier>DOI: 10.1109/ChiCC.2016.7554091</identifier><language>eng</language><publisher>TCCT</publisher><subject>Algorithms ; Cameras ; Cost map ; Dynamic environment ; Dynamics ; Indoor environments ; Kinect Camera ; Mobile robots ; Motion primitives ; Navigation ; Navigation systems ; Path planning ; Robot kinematics ; Robot vision systems ; Robots ; Visual navigation</subject><ispartof>2016 35th Chinese Control Conference (CCC), 2016, p.4757-4764</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7554091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,27901,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7554091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xin, Jing</creatorcontrib><creatorcontrib>Jiao, Xiao-Liang</creatorcontrib><creatorcontrib>Yang, Yin</creatorcontrib><creatorcontrib>Liu, Ding</creatorcontrib><title>Visual navigation for mobile robot with Kinect camera in dynamic environment</title><title>2016 35th Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>To solve the problem of the visual navigation for mobile robot in dynamic environment, a visual navigation system for mobile robot with Kinect camera is designed. Firstly, the improved RBPF (RAO Blackwellized particle filters) algorithm is used to build the 2D grid map of the indoor environment and on the basis of this map, operation of inflating obstacles is applied to build the global grid map considering the actual size of the robot. Secondly, cost map using motion primitives is built while using this cost map, anytime Repairing A*(ARA*) global path planning algorithm, which has property of anytime algorithm, is combined with Dynamic Window Approach (DWA ) local path planning algorithm to plan a smooth path from start point to target point and generate the optimal control input for robot motion. Finally, the adaptive monte carlo localization method (KLD-Sampling) is used to locate the robot and then a visual navigation system for mobile robot with Kinect camera is designed. The indoor mobile robot navigation experiment results show that the designed robot navigation system can plan a smooth path which is in accordance with robot kinematics and autonomously avoid the static and moving obstacles in the environment.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Cost map</subject><subject>Dynamic environment</subject><subject>Dynamics</subject><subject>Indoor environments</subject><subject>Kinect Camera</subject><subject>Mobile robots</subject><subject>Motion primitives</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Path planning</subject><subject>Robot kinematics</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>Visual navigation</subject><issn>2161-2927</issn><issn>1934-1768</issn><isbn>9789881563910</isbn><isbn>9881563917</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLxDAYRaMgOI7zB3STpZvWvJrHUoovHHCjbkuSfnUibTK2mZH59xZmVhcuhwP3InRDSUkpMff1JtR1yQiVpaoqQQw9QyujtNGaVpIbSs7RglFJC2aYukRX0_RDiJw5vkDrrzDtbI-j3Ydvm0OKuEsjHpILPeAxuZTxX8gb_BYi-Iy9HWC0OETcHqIdgscQ92FMcYCYr9FFZ_sJVqdcos-nx4_6pVi_P7_WD-siMKJz4b0krRBcE-Wk5sqC061mims7N8L6loPgneLgLeuk6xS11IFrKy00Ey1forujdzum3x1MuRnC5KHvbYS0mxqqeSWZmTfO6O0RDQDQbMcw2PHQnH7i_39aXPs</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Xin, Jing</creator><creator>Jiao, Xiao-Liang</creator><creator>Yang, Yin</creator><creator>Liu, Ding</creator><general>TCCT</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Visual navigation for mobile robot with Kinect camera in dynamic environment</title><author>Xin, Jing ; Jiao, Xiao-Liang ; Yang, Yin ; Liu, Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-cc60d443807b6837aeb8d82738a07b4acd3e43f73eca2f6bf71a1bebd584824d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Cost map</topic><topic>Dynamic environment</topic><topic>Dynamics</topic><topic>Indoor environments</topic><topic>Kinect Camera</topic><topic>Mobile robots</topic><topic>Motion primitives</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Path planning</topic><topic>Robot kinematics</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>Visual navigation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xin, Jing</creatorcontrib><creatorcontrib>Jiao, Xiao-Liang</creatorcontrib><creatorcontrib>Yang, Yin</creatorcontrib><creatorcontrib>Liu, Ding</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xin, Jing</au><au>Jiao, Xiao-Liang</au><au>Yang, Yin</au><au>Liu, Ding</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visual navigation for mobile robot with Kinect camera in dynamic environment</atitle><btitle>2016 35th Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2016-07-01</date><risdate>2016</risdate><spage>4757</spage><epage>4764</epage><pages>4757-4764</pages><eissn>2161-2927</eissn><eissn>1934-1768</eissn><eisbn>9789881563910</eisbn><eisbn>9881563917</eisbn><abstract>To solve the problem of the visual navigation for mobile robot in dynamic environment, a visual navigation system for mobile robot with Kinect camera is designed. Firstly, the improved RBPF (RAO Blackwellized particle filters) algorithm is used to build the 2D grid map of the indoor environment and on the basis of this map, operation of inflating obstacles is applied to build the global grid map considering the actual size of the robot. Secondly, cost map using motion primitives is built while using this cost map, anytime Repairing A*(ARA*) global path planning algorithm, which has property of anytime algorithm, is combined with Dynamic Window Approach (DWA ) local path planning algorithm to plan a smooth path from start point to target point and generate the optimal control input for robot motion. Finally, the adaptive monte carlo localization method (KLD-Sampling) is used to locate the robot and then a visual navigation system for mobile robot with Kinect camera is designed. The indoor mobile robot navigation experiment results show that the designed robot navigation system can plan a smooth path which is in accordance with robot kinematics and autonomously avoid the static and moving obstacles in the environment.</abstract><pub>TCCT</pub><doi>10.1109/ChiCC.2016.7554091</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-2927
ispartof 2016 35th Chinese Control Conference (CCC), 2016, p.4757-4764
issn 2161-2927
1934-1768
language eng
recordid cdi_proquest_miscellaneous_1835629060
source IEEE Xplore All Conference Series
subjects Algorithms
Cameras
Cost map
Dynamic environment
Dynamics
Indoor environments
Kinect Camera
Mobile robots
Motion primitives
Navigation
Navigation systems
Path planning
Robot kinematics
Robot vision systems
Robots
Visual navigation
title Visual navigation for mobile robot with Kinect camera in dynamic environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visual%20navigation%20for%20mobile%20robot%20with%20Kinect%20camera%20in%20dynamic%20environment&rft.btitle=2016%2035th%20Chinese%20Control%20Conference%20(CCC)&rft.au=Xin,%20Jing&rft.date=2016-07-01&rft.spage=4757&rft.epage=4764&rft.pages=4757-4764&rft.eissn=2161-2927&rft_id=info:doi/10.1109/ChiCC.2016.7554091&rft.eisbn=9789881563910&rft.eisbn_list=9881563917&rft_dat=%3Cproquest_CHZPO%3E1835629060%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-cc60d443807b6837aeb8d82738a07b4acd3e43f73eca2f6bf71a1bebd584824d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835629060&rft_id=info:pmid/&rft_ieee_id=7554091&rfr_iscdi=true