Loading…

On the Bayesian estimation for the stationary Neyman-Scott point processes

The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than...

Full description

Saved in:
Bibliographic Details
Published in:Applications of mathematics (Prague) 2016-08, Vol.61 (4), p.503-514
Main Authors: Kopecký, Jirí, Mrkvicka, Tomás
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23
cites cdi_FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23
container_end_page 514
container_issue 4
container_start_page 503
container_title Applications of mathematics (Prague)
container_volume 61
creator Kopecký, Jirí
Mrkvicka, Tomás
description The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today.
doi_str_mv 10.1007/s10492-016-0144-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835632580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4145626601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHeTuHGDXhhgYKmNv2nsQl0TSu_oNC1TYbqYt5d2XBgTF0AI57t8OYScM7hiANV1YiAMp8BUXkJQfUBGTFacGgbmkIxAK04rI-CYnKS0BACjtB6R51kouk8sbl2PqXGhwNQ1a9c1bSjqNu7fUre_u9gXL9ivXaCvvu26YtM2Ie-x9ZgSplNyVLtVwrOfc0ze7-_eJo90Ont4mtxMqReKd7TWKLwujTSmMjiXcyPKhfOgNJcKDOZijivwEhdScm5KWRsOJRc4r4RBXo7J5TA3__y1zX3tukkeVysXsN0my3QpVcmlhoxe_EGX7TaG3C5TjGVnyqhMsYHysU0pYm03MTuIvWVgd3btYNdmu3Zn1-qc4UMmZTZ8YPw1-d_QN3MGexI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811104696</pqid></control><display><type>article</type><title>On the Bayesian estimation for the stationary Neyman-Scott point processes</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Kopecký, Jirí ; Mrkvicka, Tomás</creator><creatorcontrib>Kopecký, Jirí ; Mrkvicka, Tomás</creatorcontrib><description>The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.1007/s10492-016-0144-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Applications of Mathematics ; Bayesian analysis ; Classical and Continuum Physics ; Computer simulation ; Error analysis ; Estimates ; Estimating techniques ; Markov analysis ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Mean square values ; Methods ; Monte Carlo simulation ; Optimization ; Parameter estimation ; Parameter modification ; Simulation ; Studies ; Theoretical</subject><ispartof>Applications of mathematics (Prague), 2016-08, Vol.61 (4), p.503-514</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23</citedby><cites>FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1811104696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Kopecký, Jirí</creatorcontrib><creatorcontrib>Mrkvicka, Tomás</creatorcontrib><title>On the Bayesian estimation for the stationary Neyman-Scott point processes</title><title>Applications of mathematics (Prague)</title><addtitle>Appl Math</addtitle><description>The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Bayesian analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mean square values</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Simulation</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kM1OAyEURonRxFp9AHeTuHGDXhhgYKmNv2nsQl0TSu_oNC1TYbqYt5d2XBgTF0AI57t8OYScM7hiANV1YiAMp8BUXkJQfUBGTFacGgbmkIxAK04rI-CYnKS0BACjtB6R51kouk8sbl2PqXGhwNQ1a9c1bSjqNu7fUre_u9gXL9ivXaCvvu26YtM2Ie-x9ZgSplNyVLtVwrOfc0ze7-_eJo90Ont4mtxMqReKd7TWKLwujTSmMjiXcyPKhfOgNJcKDOZijivwEhdScm5KWRsOJRc4r4RBXo7J5TA3__y1zX3tukkeVysXsN0my3QpVcmlhoxe_EGX7TaG3C5TjGVnyqhMsYHysU0pYm03MTuIvWVgd3btYNdmu3Zn1-qc4UMmZTZ8YPw1-d_QN3MGexI</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Kopecký, Jirí</creator><creator>Mrkvicka, Tomás</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160801</creationdate><title>On the Bayesian estimation for the stationary Neyman-Scott point processes</title><author>Kopecký, Jirí ; Mrkvicka, Tomás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Bayesian analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mean square values</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Simulation</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopecký, Jirí</creatorcontrib><creatorcontrib>Mrkvicka, Tomás</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopecký, Jirí</au><au>Mrkvicka, Tomás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Bayesian estimation for the stationary Neyman-Scott point processes</atitle><jtitle>Applications of mathematics (Prague)</jtitle><stitle>Appl Math</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>61</volume><issue>4</issue><spage>503</spage><epage>514</epage><pages>503-514</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10492-016-0144-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-7940
ispartof Applications of mathematics (Prague), 2016-08, Vol.61 (4), p.503-514
issn 0862-7940
1572-9109
language eng
recordid cdi_proquest_miscellaneous_1835632580
source ABI/INFORM Collection; Springer Nature
subjects Algorithms
Analysis
Applications of Mathematics
Bayesian analysis
Classical and Continuum Physics
Computer simulation
Error analysis
Estimates
Estimating techniques
Markov analysis
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Mean square values
Methods
Monte Carlo simulation
Optimization
Parameter estimation
Parameter modification
Simulation
Studies
Theoretical
title On the Bayesian estimation for the stationary Neyman-Scott point processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Bayesian%20estimation%20for%20the%20stationary%20Neyman-Scott%20point%20processes&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Kopeck%C3%BD,%20Jir%C3%AD&rft.date=2016-08-01&rft.volume=61&rft.issue=4&rft.spage=503&rft.epage=514&rft.pages=503-514&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.1007/s10492-016-0144-8&rft_dat=%3Cproquest_cross%3E4145626601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1811104696&rft_id=info:pmid/&rfr_iscdi=true