Loading…
On the Bayesian estimation for the stationary Neyman-Scott point processes
The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than...
Saved in:
Published in: | Applications of mathematics (Prague) 2016-08, Vol.61 (4), p.503-514 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23 |
container_end_page | 514 |
container_issue | 4 |
container_start_page | 503 |
container_title | Applications of mathematics (Prague) |
container_volume | 61 |
creator | Kopecký, Jirí Mrkvicka, Tomás |
description | The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today. |
doi_str_mv | 10.1007/s10492-016-0144-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835632580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4145626601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHeTuHGDXhhgYKmNv2nsQl0TSu_oNC1TYbqYt5d2XBgTF0AI57t8OYScM7hiANV1YiAMp8BUXkJQfUBGTFacGgbmkIxAK04rI-CYnKS0BACjtB6R51kouk8sbl2PqXGhwNQ1a9c1bSjqNu7fUre_u9gXL9ivXaCvvu26YtM2Ie-x9ZgSplNyVLtVwrOfc0ze7-_eJo90Ont4mtxMqReKd7TWKLwujTSmMjiXcyPKhfOgNJcKDOZijivwEhdScm5KWRsOJRc4r4RBXo7J5TA3__y1zX3tukkeVysXsN0my3QpVcmlhoxe_EGX7TaG3C5TjGVnyqhMsYHysU0pYm03MTuIvWVgd3btYNdmu3Zn1-qc4UMmZTZ8YPw1-d_QN3MGexI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811104696</pqid></control><display><type>article</type><title>On the Bayesian estimation for the stationary Neyman-Scott point processes</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Kopecký, Jirí ; Mrkvicka, Tomás</creator><creatorcontrib>Kopecký, Jirí ; Mrkvicka, Tomás</creatorcontrib><description>The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.1007/s10492-016-0144-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Applications of Mathematics ; Bayesian analysis ; Classical and Continuum Physics ; Computer simulation ; Error analysis ; Estimates ; Estimating techniques ; Markov analysis ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Mean square values ; Methods ; Monte Carlo simulation ; Optimization ; Parameter estimation ; Parameter modification ; Simulation ; Studies ; Theoretical</subject><ispartof>Applications of mathematics (Prague), 2016-08, Vol.61 (4), p.503-514</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23</citedby><cites>FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1811104696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Kopecký, Jirí</creatorcontrib><creatorcontrib>Mrkvicka, Tomás</creatorcontrib><title>On the Bayesian estimation for the stationary Neyman-Scott point processes</title><title>Applications of mathematics (Prague)</title><addtitle>Appl Math</addtitle><description>The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Bayesian analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mean square values</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Simulation</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kM1OAyEURonRxFp9AHeTuHGDXhhgYKmNv2nsQl0TSu_oNC1TYbqYt5d2XBgTF0AI57t8OYScM7hiANV1YiAMp8BUXkJQfUBGTFacGgbmkIxAK04rI-CYnKS0BACjtB6R51kouk8sbl2PqXGhwNQ1a9c1bSjqNu7fUre_u9gXL9ivXaCvvu26YtM2Ie-x9ZgSplNyVLtVwrOfc0ze7-_eJo90Ont4mtxMqReKd7TWKLwujTSmMjiXcyPKhfOgNJcKDOZijivwEhdScm5KWRsOJRc4r4RBXo7J5TA3__y1zX3tukkeVysXsN0my3QpVcmlhoxe_EGX7TaG3C5TjGVnyqhMsYHysU0pYm03MTuIvWVgd3btYNdmu3Zn1-qc4UMmZTZ8YPw1-d_QN3MGexI</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Kopecký, Jirí</creator><creator>Mrkvicka, Tomás</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160801</creationdate><title>On the Bayesian estimation for the stationary Neyman-Scott point processes</title><author>Kopecký, Jirí ; Mrkvicka, Tomás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Bayesian analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mean square values</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Simulation</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopecký, Jirí</creatorcontrib><creatorcontrib>Mrkvicka, Tomás</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopecký, Jirí</au><au>Mrkvicka, Tomás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Bayesian estimation for the stationary Neyman-Scott point processes</atitle><jtitle>Applications of mathematics (Prague)</jtitle><stitle>Appl Math</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>61</volume><issue>4</issue><spage>503</spage><epage>514</epage><pages>503-514</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10492-016-0144-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0862-7940 |
ispartof | Applications of mathematics (Prague), 2016-08, Vol.61 (4), p.503-514 |
issn | 0862-7940 1572-9109 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835632580 |
source | ABI/INFORM Collection; Springer Nature |
subjects | Algorithms Analysis Applications of Mathematics Bayesian analysis Classical and Continuum Physics Computer simulation Error analysis Estimates Estimating techniques Markov analysis Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Mean square values Methods Monte Carlo simulation Optimization Parameter estimation Parameter modification Simulation Studies Theoretical |
title | On the Bayesian estimation for the stationary Neyman-Scott point processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Bayesian%20estimation%20for%20the%20stationary%20Neyman-Scott%20point%20processes&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Kopeck%C3%BD,%20Jir%C3%AD&rft.date=2016-08-01&rft.volume=61&rft.issue=4&rft.spage=503&rft.epage=514&rft.pages=503-514&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.1007/s10492-016-0144-8&rft_dat=%3Cproquest_cross%3E4145626601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-f8e4c83959979eb5b943dac06825609e096a260c5ed5522935f920324eb749e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1811104696&rft_id=info:pmid/&rfr_iscdi=true |