Loading…

Clustering from sparse pairwise measurements

We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, and two spectral algorithms based on the non-backt...

Full description

Saved in:
Bibliographic Details
Main Authors: Saade, Alaa, Krzakala, Florent, Lelarge, Marc, Zdeborova, Lenka
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 784
container_issue
container_start_page 780
container_title
container_volume
creator Saade, Alaa
Krzakala, Florent
Lelarge, Marc
Zdeborova, Lenka
description We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, and two spectral algorithms based on the non-backtracking and Bethe Hessian operators. For the case of two symmetric clusters, we conjecture that these algorithms are asymptotically optimal in that they detect the clusters as soon as it is information theoretically possible to do so. We substantiate this claim for one of the spectral approaches we introduce.
doi_str_mv 10.1109/ISIT.2016.7541405
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835640513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7541405</ieee_id><sourcerecordid>1835640513</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2005-6fecb7654c057c01207f827e4018fe37c8b6a72b2f55831310ae1f798e238e3a3</originalsourceid><addsrcrecordid>eNotkMtKxEAURFtBcBznA8RNli5MvLc7_chSgo_AgAvHdeiE29qSl90J4t8bmFlVLQ5FVTF2g5AhQvFQvVeHjAOqTMscc5BnbFdogxIKQAOKn7MNR6lTg6gv2VWM3wBCC-Abdl92S5wp-OEzcWHskzjZECmZrA-_fjU92bgE6mmY4zW7cLaLtDvpln08Px3K13T_9lKVj_v0iwPIVDlqG61k3oLULSAH7QzXlK9tHAndmkZZzRvupDQCBYIldLowxIUhYcWW3R1zpzD-LBTnuvexpa6zA41LrNEIqdadKFb09oh6Iqqn4Hsb_urTD-If84NPlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1835640513</pqid></control><display><type>conference_proceeding</type><title>Clustering from sparse pairwise measurements</title><source>IEEE Xplore All Conference Series</source><creator>Saade, Alaa ; Krzakala, Florent ; Lelarge, Marc ; Zdeborova, Lenka</creator><creatorcontrib>Saade, Alaa ; Krzakala, Florent ; Lelarge, Marc ; Zdeborova, Lenka</creatorcontrib><description>We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, and two spectral algorithms based on the non-backtracking and Bethe Hessian operators. For the case of two symmetric clusters, we conjecture that these algorithms are asymptotically optimal in that they detect the clusters as soon as it is information theoretically possible to do so. We substantiate this claim for one of the spectral approaches we introduce.</description><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781509018062</identifier><identifier>EISBN: 1509018069</identifier><identifier>DOI: 10.1109/ISIT.2016.7541405</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Approximation ; Approximation algorithms ; Asymptotic properties ; Belief propagation ; Clustering algorithms ; Clusters ; Density measurement ; Information theory ; Jacobian matrices ; Optimization ; Spectra ; Tasks</subject><ispartof>2016 IEEE International Symposium on Information Theory (ISIT), 2016, p.780-784</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7541405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7541405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saade, Alaa</creatorcontrib><creatorcontrib>Krzakala, Florent</creatorcontrib><creatorcontrib>Lelarge, Marc</creatorcontrib><creatorcontrib>Zdeborova, Lenka</creatorcontrib><title>Clustering from sparse pairwise measurements</title><title>2016 IEEE International Symposium on Information Theory (ISIT)</title><addtitle>ISIT</addtitle><description>We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, and two spectral algorithms based on the non-backtracking and Bethe Hessian operators. For the case of two symmetric clusters, we conjecture that these algorithms are asymptotically optimal in that they detect the clusters as soon as it is information theoretically possible to do so. We substantiate this claim for one of the spectral approaches we introduce.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Asymptotic properties</subject><subject>Belief propagation</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Density measurement</subject><subject>Information theory</subject><subject>Jacobian matrices</subject><subject>Optimization</subject><subject>Spectra</subject><subject>Tasks</subject><issn>2157-8117</issn><isbn>9781509018062</isbn><isbn>1509018069</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKxEAURFtBcBznA8RNli5MvLc7_chSgo_AgAvHdeiE29qSl90J4t8bmFlVLQ5FVTF2g5AhQvFQvVeHjAOqTMscc5BnbFdogxIKQAOKn7MNR6lTg6gv2VWM3wBCC-Abdl92S5wp-OEzcWHskzjZECmZrA-_fjU92bgE6mmY4zW7cLaLtDvpln08Px3K13T_9lKVj_v0iwPIVDlqG61k3oLULSAH7QzXlK9tHAndmkZZzRvupDQCBYIldLowxIUhYcWW3R1zpzD-LBTnuvexpa6zA41LrNEIqdadKFb09oh6Iqqn4Hsb_urTD-If84NPlg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Saade, Alaa</creator><creator>Krzakala, Florent</creator><creator>Lelarge, Marc</creator><creator>Zdeborova, Lenka</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160701</creationdate><title>Clustering from sparse pairwise measurements</title><author>Saade, Alaa ; Krzakala, Florent ; Lelarge, Marc ; Zdeborova, Lenka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2005-6fecb7654c057c01207f827e4018fe37c8b6a72b2f55831310ae1f798e238e3a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Asymptotic properties</topic><topic>Belief propagation</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Density measurement</topic><topic>Information theory</topic><topic>Jacobian matrices</topic><topic>Optimization</topic><topic>Spectra</topic><topic>Tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Saade, Alaa</creatorcontrib><creatorcontrib>Krzakala, Florent</creatorcontrib><creatorcontrib>Lelarge, Marc</creatorcontrib><creatorcontrib>Zdeborova, Lenka</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saade, Alaa</au><au>Krzakala, Florent</au><au>Lelarge, Marc</au><au>Zdeborova, Lenka</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Clustering from sparse pairwise measurements</atitle><btitle>2016 IEEE International Symposium on Information Theory (ISIT)</btitle><stitle>ISIT</stitle><date>2016-07-01</date><risdate>2016</risdate><spage>780</spage><epage>784</epage><pages>780-784</pages><eissn>2157-8117</eissn><eisbn>9781509018062</eisbn><eisbn>1509018069</eisbn><abstract>We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, and two spectral algorithms based on the non-backtracking and Bethe Hessian operators. For the case of two symmetric clusters, we conjecture that these algorithms are asymptotically optimal in that they detect the clusters as soon as it is information theoretically possible to do so. We substantiate this claim for one of the spectral approaches we introduce.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2016.7541405</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2157-8117
ispartof 2016 IEEE International Symposium on Information Theory (ISIT), 2016, p.780-784
issn 2157-8117
language eng
recordid cdi_proquest_miscellaneous_1835640513
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Algorithms
Approximation
Approximation algorithms
Asymptotic properties
Belief propagation
Clustering algorithms
Clusters
Density measurement
Information theory
Jacobian matrices
Optimization
Spectra
Tasks
title Clustering from sparse pairwise measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Clustering%20from%20sparse%20pairwise%20measurements&rft.btitle=2016%20IEEE%20International%20Symposium%20on%20Information%20Theory%20(ISIT)&rft.au=Saade,%20Alaa&rft.date=2016-07-01&rft.spage=780&rft.epage=784&rft.pages=780-784&rft.eissn=2157-8117&rft_id=info:doi/10.1109/ISIT.2016.7541405&rft.eisbn=9781509018062&rft.eisbn_list=1509018069&rft_dat=%3Cproquest_CHZPO%3E1835640513%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h2005-6fecb7654c057c01207f827e4018fe37c8b6a72b2f55831310ae1f798e238e3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835640513&rft_id=info:pmid/&rft_ieee_id=7541405&rfr_iscdi=true