Loading…

Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses

Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental freque...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mechanical sciences 2016-09, Vol.115-116, p.406-415
Main Authors: Shi, Wencong, Shen, Z.-B., Peng, X.-L., Li, X.-F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53
cites cdi_FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53
container_end_page 415
container_issue
container_start_page 406
container_title International journal of mechanical sciences
container_volume 115-116
creator Shi, Wencong
Shen, Z.-B.
Peng, X.-L.
Li, X.-F.
description Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental frequency. The fundamental frequencies obtained using the analytical and approximate methods are compared to demonstrate the accuracy of the approximate method. The influences of attached masses, rotational inertia and shear rigidity on the resonant frequencies are discussed. Results show that the Timoshenko beam theory is necessary at higher order frequencies due to the error caused by other theories like Euler–Bernoulli, shear or Rayleigh beams. These results are useful to design energy harvesters and mass sensors. •Vibration of Timoshenko beams with unequal tip masses is analyzed.•Frequency equation of free–free Timoshenko beams with end masses is derived.•Expressions for the fundamental frequencies with high accuracy are given.•Effect of end masses on the resonant frequencies is discussed.
doi_str_mv 10.1016/j.ijmecsci.2016.07.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835643407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740316301308</els_id><sourcerecordid>1835643407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53</originalsourceid><addsrcrecordid>eNqFkEFOwzAQRS0EEqVwBeQlmwQ7jmNnB6ooIFViU9aW60xUh8YudgrqjjtwQ06Co5Y1q6_R_Hma_xG6piSnhFa3XW67Hkw0Ni_SnBOREypP0IRKUWcFrYpTNCGkIJkoCTtHFzF2hFBBOJsgMw_wvgNn9jipHqx3WLsGB4jeaTfg9ri3ELFvxxF-vr5HwUvb-7gG9-bxCnQf8acd1njnRtAGQ6L0OkaIl-is1ZsIV0edotf5w3L2lC1eHp9n94vMsJIPGeMgpISCmRpWNRclcF6nJKw0hoJoGCW6qXgjS1pDQ2tZE8YlNSBF2bYrzqbo5sDdBp9-joPqbTSw2WgHfhdVQvGqZCURyVodrCb4GAO0ahtsr8NeUaLGVlWn_lpVY6uKCDX-MkV3h0NIQT4sBJUcqR5obAAzqMbb_xC_hXyGCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835643407</pqid></control><display><type>article</type><title>Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses</title><source>ScienceDirect Journals</source><creator>Shi, Wencong ; Shen, Z.-B. ; Peng, X.-L. ; Li, X.-F.</creator><creatorcontrib>Shi, Wencong ; Shen, Z.-B. ; Peng, X.-L. ; Li, X.-F.</creatorcontrib><description>Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental frequency. The fundamental frequencies obtained using the analytical and approximate methods are compared to demonstrate the accuracy of the approximate method. The influences of attached masses, rotational inertia and shear rigidity on the resonant frequencies are discussed. Results show that the Timoshenko beam theory is necessary at higher order frequencies due to the error caused by other theories like Euler–Bernoulli, shear or Rayleigh beams. These results are useful to design energy harvesters and mass sensors. •Vibration of Timoshenko beams with unequal tip masses is analyzed.•Frequency equation of free–free Timoshenko beams with end masses is derived.•Expressions for the fundamental frequencies with high accuracy are given.•Effect of end masses on the resonant frequencies is discussed.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2016.07.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Explicit fundamental frequency ; Free–free Timoshenko beam ; Inertia ; Mathematical analysis ; Resonant frequencies ; Resonant frequency ; Shear ; Timoshenko beams ; Tip mass ; Transverse vibration ; Vibration</subject><ispartof>International journal of mechanical sciences, 2016-09, Vol.115-116, p.406-415</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53</citedby><cites>FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shi, Wencong</creatorcontrib><creatorcontrib>Shen, Z.-B.</creatorcontrib><creatorcontrib>Peng, X.-L.</creatorcontrib><creatorcontrib>Li, X.-F.</creatorcontrib><title>Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses</title><title>International journal of mechanical sciences</title><description>Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental frequency. The fundamental frequencies obtained using the analytical and approximate methods are compared to demonstrate the accuracy of the approximate method. The influences of attached masses, rotational inertia and shear rigidity on the resonant frequencies are discussed. Results show that the Timoshenko beam theory is necessary at higher order frequencies due to the error caused by other theories like Euler–Bernoulli, shear or Rayleigh beams. These results are useful to design energy harvesters and mass sensors. •Vibration of Timoshenko beams with unequal tip masses is analyzed.•Frequency equation of free–free Timoshenko beams with end masses is derived.•Expressions for the fundamental frequencies with high accuracy are given.•Effect of end masses on the resonant frequencies is discussed.</description><subject>Approximation</subject><subject>Explicit fundamental frequency</subject><subject>Free–free Timoshenko beam</subject><subject>Inertia</subject><subject>Mathematical analysis</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Shear</subject><subject>Timoshenko beams</subject><subject>Tip mass</subject><subject>Transverse vibration</subject><subject>Vibration</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFOwzAQRS0EEqVwBeQlmwQ7jmNnB6ooIFViU9aW60xUh8YudgrqjjtwQ06Co5Y1q6_R_Hma_xG6piSnhFa3XW67Hkw0Ni_SnBOREypP0IRKUWcFrYpTNCGkIJkoCTtHFzF2hFBBOJsgMw_wvgNn9jipHqx3WLsGB4jeaTfg9ri3ELFvxxF-vr5HwUvb-7gG9-bxCnQf8acd1njnRtAGQ6L0OkaIl-is1ZsIV0edotf5w3L2lC1eHp9n94vMsJIPGeMgpISCmRpWNRclcF6nJKw0hoJoGCW6qXgjS1pDQ2tZE8YlNSBF2bYrzqbo5sDdBp9-joPqbTSw2WgHfhdVQvGqZCURyVodrCb4GAO0ahtsr8NeUaLGVlWn_lpVY6uKCDX-MkV3h0NIQT4sBJUcqR5obAAzqMbb_xC_hXyGCw</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Shi, Wencong</creator><creator>Shen, Z.-B.</creator><creator>Peng, X.-L.</creator><creator>Li, X.-F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201609</creationdate><title>Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses</title><author>Shi, Wencong ; Shen, Z.-B. ; Peng, X.-L. ; Li, X.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Explicit fundamental frequency</topic><topic>Free–free Timoshenko beam</topic><topic>Inertia</topic><topic>Mathematical analysis</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Shear</topic><topic>Timoshenko beams</topic><topic>Tip mass</topic><topic>Transverse vibration</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Wencong</creatorcontrib><creatorcontrib>Shen, Z.-B.</creatorcontrib><creatorcontrib>Peng, X.-L.</creatorcontrib><creatorcontrib>Li, X.-F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Wencong</au><au>Shen, Z.-B.</au><au>Peng, X.-L.</au><au>Li, X.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2016-09</date><risdate>2016</risdate><volume>115-116</volume><spage>406</spage><epage>415</epage><pages>406-415</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><abstract>Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental frequency. The fundamental frequencies obtained using the analytical and approximate methods are compared to demonstrate the accuracy of the approximate method. The influences of attached masses, rotational inertia and shear rigidity on the resonant frequencies are discussed. Results show that the Timoshenko beam theory is necessary at higher order frequencies due to the error caused by other theories like Euler–Bernoulli, shear or Rayleigh beams. These results are useful to design energy harvesters and mass sensors. •Vibration of Timoshenko beams with unequal tip masses is analyzed.•Frequency equation of free–free Timoshenko beams with end masses is derived.•Expressions for the fundamental frequencies with high accuracy are given.•Effect of end masses on the resonant frequencies is discussed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2016.07.018</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 2016-09, Vol.115-116, p.406-415
issn 0020-7403
1879-2162
language eng
recordid cdi_proquest_miscellaneous_1835643407
source ScienceDirect Journals
subjects Approximation
Explicit fundamental frequency
Free–free Timoshenko beam
Inertia
Mathematical analysis
Resonant frequencies
Resonant frequency
Shear
Timoshenko beams
Tip mass
Transverse vibration
Vibration
title Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20equation%20and%20resonant%20frequencies%20of%20free%E2%80%93free%20Timoshenko%20beams%20with%20unequal%20end%20masses&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Shi,%20Wencong&rft.date=2016-09&rft.volume=115-116&rft.spage=406&rft.epage=415&rft.pages=406-415&rft.issn=0020-7403&rft.eissn=1879-2162&rft_id=info:doi/10.1016/j.ijmecsci.2016.07.018&rft_dat=%3Cproquest_cross%3E1835643407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835643407&rft_id=info:pmid/&rfr_iscdi=true