Loading…
Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses
Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental freque...
Saved in:
Published in: | International journal of mechanical sciences 2016-09, Vol.115-116, p.406-415 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53 |
container_end_page | 415 |
container_issue | |
container_start_page | 406 |
container_title | International journal of mechanical sciences |
container_volume | 115-116 |
creator | Shi, Wencong Shen, Z.-B. Peng, X.-L. Li, X.-F. |
description | Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental frequency. The fundamental frequencies obtained using the analytical and approximate methods are compared to demonstrate the accuracy of the approximate method. The influences of attached masses, rotational inertia and shear rigidity on the resonant frequencies are discussed. Results show that the Timoshenko beam theory is necessary at higher order frequencies due to the error caused by other theories like Euler–Bernoulli, shear or Rayleigh beams. These results are useful to design energy harvesters and mass sensors.
•Vibration of Timoshenko beams with unequal tip masses is analyzed.•Frequency equation of free–free Timoshenko beams with end masses is derived.•Expressions for the fundamental frequencies with high accuracy are given.•Effect of end masses on the resonant frequencies is discussed. |
doi_str_mv | 10.1016/j.ijmecsci.2016.07.018 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835643407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740316301308</els_id><sourcerecordid>1835643407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53</originalsourceid><addsrcrecordid>eNqFkEFOwzAQRS0EEqVwBeQlmwQ7jmNnB6ooIFViU9aW60xUh8YudgrqjjtwQ06Co5Y1q6_R_Hma_xG6piSnhFa3XW67Hkw0Ni_SnBOREypP0IRKUWcFrYpTNCGkIJkoCTtHFzF2hFBBOJsgMw_wvgNn9jipHqx3WLsGB4jeaTfg9ri3ELFvxxF-vr5HwUvb-7gG9-bxCnQf8acd1njnRtAGQ6L0OkaIl-is1ZsIV0edotf5w3L2lC1eHp9n94vMsJIPGeMgpISCmRpWNRclcF6nJKw0hoJoGCW6qXgjS1pDQ2tZE8YlNSBF2bYrzqbo5sDdBp9-joPqbTSw2WgHfhdVQvGqZCURyVodrCb4GAO0ahtsr8NeUaLGVlWn_lpVY6uKCDX-MkV3h0NIQT4sBJUcqR5obAAzqMbb_xC_hXyGCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835643407</pqid></control><display><type>article</type><title>Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses</title><source>ScienceDirect Journals</source><creator>Shi, Wencong ; Shen, Z.-B. ; Peng, X.-L. ; Li, X.-F.</creator><creatorcontrib>Shi, Wencong ; Shen, Z.-B. ; Peng, X.-L. ; Li, X.-F.</creatorcontrib><description>Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental frequency. The fundamental frequencies obtained using the analytical and approximate methods are compared to demonstrate the accuracy of the approximate method. The influences of attached masses, rotational inertia and shear rigidity on the resonant frequencies are discussed. Results show that the Timoshenko beam theory is necessary at higher order frequencies due to the error caused by other theories like Euler–Bernoulli, shear or Rayleigh beams. These results are useful to design energy harvesters and mass sensors.
•Vibration of Timoshenko beams with unequal tip masses is analyzed.•Frequency equation of free–free Timoshenko beams with end masses is derived.•Expressions for the fundamental frequencies with high accuracy are given.•Effect of end masses on the resonant frequencies is discussed.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2016.07.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Explicit fundamental frequency ; Free–free Timoshenko beam ; Inertia ; Mathematical analysis ; Resonant frequencies ; Resonant frequency ; Shear ; Timoshenko beams ; Tip mass ; Transverse vibration ; Vibration</subject><ispartof>International journal of mechanical sciences, 2016-09, Vol.115-116, p.406-415</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53</citedby><cites>FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shi, Wencong</creatorcontrib><creatorcontrib>Shen, Z.-B.</creatorcontrib><creatorcontrib>Peng, X.-L.</creatorcontrib><creatorcontrib>Li, X.-F.</creatorcontrib><title>Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses</title><title>International journal of mechanical sciences</title><description>Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental frequency. The fundamental frequencies obtained using the analytical and approximate methods are compared to demonstrate the accuracy of the approximate method. The influences of attached masses, rotational inertia and shear rigidity on the resonant frequencies are discussed. Results show that the Timoshenko beam theory is necessary at higher order frequencies due to the error caused by other theories like Euler–Bernoulli, shear or Rayleigh beams. These results are useful to design energy harvesters and mass sensors.
•Vibration of Timoshenko beams with unequal tip masses is analyzed.•Frequency equation of free–free Timoshenko beams with end masses is derived.•Expressions for the fundamental frequencies with high accuracy are given.•Effect of end masses on the resonant frequencies is discussed.</description><subject>Approximation</subject><subject>Explicit fundamental frequency</subject><subject>Free–free Timoshenko beam</subject><subject>Inertia</subject><subject>Mathematical analysis</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Shear</subject><subject>Timoshenko beams</subject><subject>Tip mass</subject><subject>Transverse vibration</subject><subject>Vibration</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFOwzAQRS0EEqVwBeQlmwQ7jmNnB6ooIFViU9aW60xUh8YudgrqjjtwQ06Co5Y1q6_R_Hma_xG6piSnhFa3XW67Hkw0Ni_SnBOREypP0IRKUWcFrYpTNCGkIJkoCTtHFzF2hFBBOJsgMw_wvgNn9jipHqx3WLsGB4jeaTfg9ri3ELFvxxF-vr5HwUvb-7gG9-bxCnQf8acd1njnRtAGQ6L0OkaIl-is1ZsIV0edotf5w3L2lC1eHp9n94vMsJIPGeMgpISCmRpWNRclcF6nJKw0hoJoGCW6qXgjS1pDQ2tZE8YlNSBF2bYrzqbo5sDdBp9-joPqbTSw2WgHfhdVQvGqZCURyVodrCb4GAO0ahtsr8NeUaLGVlWn_lpVY6uKCDX-MkV3h0NIQT4sBJUcqR5obAAzqMbb_xC_hXyGCw</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Shi, Wencong</creator><creator>Shen, Z.-B.</creator><creator>Peng, X.-L.</creator><creator>Li, X.-F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201609</creationdate><title>Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses</title><author>Shi, Wencong ; Shen, Z.-B. ; Peng, X.-L. ; Li, X.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Explicit fundamental frequency</topic><topic>Free–free Timoshenko beam</topic><topic>Inertia</topic><topic>Mathematical analysis</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Shear</topic><topic>Timoshenko beams</topic><topic>Tip mass</topic><topic>Transverse vibration</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Wencong</creatorcontrib><creatorcontrib>Shen, Z.-B.</creatorcontrib><creatorcontrib>Peng, X.-L.</creatorcontrib><creatorcontrib>Li, X.-F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Wencong</au><au>Shen, Z.-B.</au><au>Peng, X.-L.</au><au>Li, X.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2016-09</date><risdate>2016</risdate><volume>115-116</volume><spage>406</spage><epage>415</epage><pages>406-415</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><abstract>Transverse vibration of free–free Timoshenko beams carrying concentrated masses at two ends is investigated. An exact frequency equation is derived and resonant frequencies are calculated. A Fredholm integral equation approach is formulated to obtain an explicit expression for the fundamental frequency. The fundamental frequencies obtained using the analytical and approximate methods are compared to demonstrate the accuracy of the approximate method. The influences of attached masses, rotational inertia and shear rigidity on the resonant frequencies are discussed. Results show that the Timoshenko beam theory is necessary at higher order frequencies due to the error caused by other theories like Euler–Bernoulli, shear or Rayleigh beams. These results are useful to design energy harvesters and mass sensors.
•Vibration of Timoshenko beams with unequal tip masses is analyzed.•Frequency equation of free–free Timoshenko beams with end masses is derived.•Expressions for the fundamental frequencies with high accuracy are given.•Effect of end masses on the resonant frequencies is discussed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2016.07.018</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7403 |
ispartof | International journal of mechanical sciences, 2016-09, Vol.115-116, p.406-415 |
issn | 0020-7403 1879-2162 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835643407 |
source | ScienceDirect Journals |
subjects | Approximation Explicit fundamental frequency Free–free Timoshenko beam Inertia Mathematical analysis Resonant frequencies Resonant frequency Shear Timoshenko beams Tip mass Transverse vibration Vibration |
title | Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20equation%20and%20resonant%20frequencies%20of%20free%E2%80%93free%20Timoshenko%20beams%20with%20unequal%20end%20masses&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Shi,%20Wencong&rft.date=2016-09&rft.volume=115-116&rft.spage=406&rft.epage=415&rft.pages=406-415&rft.issn=0020-7403&rft.eissn=1879-2162&rft_id=info:doi/10.1016/j.ijmecsci.2016.07.018&rft_dat=%3Cproquest_cross%3E1835643407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-35e788e23c9eb9574e55901834cc1e7d310ad65d8419ed198903581ce874ffb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835643407&rft_id=info:pmid/&rfr_iscdi=true |