Loading…

Convergence of equilibria for numerical approximations of a suspension model

In this paper we study the numerical approximations of a non-Newtonian model for concentrated suspensions. First, we prove that the approximative models possess a unique fixed point and study their convergence to a stationary point of the original equation. Second, we implement an implicit Euler sch...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2016-08, Vol.72 (4), p.856-878
Main Authors: Valero, J., Giménez, A., Kapustyan, O.V., Kasyanov, P.O., Amigó, J.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-cc3dc5369200a3fad0787204f455fc09aaab0167277380df22f55b70b372d653
container_end_page 878
container_issue 4
container_start_page 856
container_title Computers & mathematics with applications (1987)
container_volume 72
creator Valero, J.
Giménez, A.
Kapustyan, O.V.
Kasyanov, P.O.
Amigó, J.M.
description In this paper we study the numerical approximations of a non-Newtonian model for concentrated suspensions. First, we prove that the approximative models possess a unique fixed point and study their convergence to a stationary point of the original equation. Second, we implement an implicit Euler scheme, proving the convergence of these approximations as well. Finally, numerical simulations are provided.
doi_str_mv 10.1016/j.camwa.2016.05.034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835648654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122116303145</els_id><sourcerecordid>1835648654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-cc3dc5369200a3fad0787204f455fc09aaab0167277380df22f55b70b372d653</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwC7jkyCVhbcePHjigipdUiUvvluPYyFUSt3ZS4N_jUM6cVrOaWe18CN1iqDBgfr-rjO4_dUWyqIBVQOsztMBS0FJwLs_RAuRKlpgQfImuUtoBQE0JLNBmHYajjR92MLYIrrCHyXe-iV4XLsRimHobvdFdoff7GL58r0cfhjRbdZGmtLdDyouiD63trtGF012yN39zibbPT9v1a7l5f3lbP25KQyQfS2NoaxjlKwKgqdMtCCkI1K5mzBlYaa2bXEQQIaiE1hHiGGsENFSQljO6RHens_mjw2TTqHqfjO06PdgwJYUlZbyWnNXZSk9WE0NK0Tq1j7lD_FYY1IxO7dQvOjWjU8BURpdTD6eUzSWO3kaVjJ8JtT5aM6o2-H_zP8TKeLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835648654</pqid></control><display><type>article</type><title>Convergence of equilibria for numerical approximations of a suspension model</title><source>ScienceDirect Freedom Collection</source><creator>Valero, J. ; Giménez, A. ; Kapustyan, O.V. ; Kasyanov, P.O. ; Amigó, J.M.</creator><creatorcontrib>Valero, J. ; Giménez, A. ; Kapustyan, O.V. ; Kasyanov, P.O. ; Amigó, J.M.</creatorcontrib><description>In this paper we study the numerical approximations of a non-Newtonian model for concentrated suspensions. First, we prove that the approximative models possess a unique fixed point and study their convergence to a stationary point of the original equation. Second, we implement an implicit Euler scheme, proving the convergence of these approximations as well. Finally, numerical simulations are provided.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2016.05.034</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Computer simulation ; Convergence ; Finite-difference schemes ; Mathematical analysis ; Mathematical models ; Non-Newtonian fluids ; Numerical approximations ; Partial differential equations ; Proving ; Suspensions</subject><ispartof>Computers &amp; mathematics with applications (1987), 2016-08, Vol.72 (4), p.856-878</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-cc3dc5369200a3fad0787204f455fc09aaab0167277380df22f55b70b372d653</cites><orcidid>0000-0002-6662-0160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Valero, J.</creatorcontrib><creatorcontrib>Giménez, A.</creatorcontrib><creatorcontrib>Kapustyan, O.V.</creatorcontrib><creatorcontrib>Kasyanov, P.O.</creatorcontrib><creatorcontrib>Amigó, J.M.</creatorcontrib><title>Convergence of equilibria for numerical approximations of a suspension model</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper we study the numerical approximations of a non-Newtonian model for concentrated suspensions. First, we prove that the approximative models possess a unique fixed point and study their convergence to a stationary point of the original equation. Second, we implement an implicit Euler scheme, proving the convergence of these approximations as well. Finally, numerical simulations are provided.</description><subject>Approximation</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Finite-difference schemes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-Newtonian fluids</subject><subject>Numerical approximations</subject><subject>Partial differential equations</subject><subject>Proving</subject><subject>Suspensions</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwC7jkyCVhbcePHjigipdUiUvvluPYyFUSt3ZS4N_jUM6cVrOaWe18CN1iqDBgfr-rjO4_dUWyqIBVQOsztMBS0FJwLs_RAuRKlpgQfImuUtoBQE0JLNBmHYajjR92MLYIrrCHyXe-iV4XLsRimHobvdFdoff7GL58r0cfhjRbdZGmtLdDyouiD63trtGF012yN39zibbPT9v1a7l5f3lbP25KQyQfS2NoaxjlKwKgqdMtCCkI1K5mzBlYaa2bXEQQIaiE1hHiGGsENFSQljO6RHens_mjw2TTqHqfjO06PdgwJYUlZbyWnNXZSk9WE0NK0Tq1j7lD_FYY1IxO7dQvOjWjU8BURpdTD6eUzSWO3kaVjJ8JtT5aM6o2-H_zP8TKeLM</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Valero, J.</creator><creator>Giménez, A.</creator><creator>Kapustyan, O.V.</creator><creator>Kasyanov, P.O.</creator><creator>Amigó, J.M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6662-0160</orcidid></search><sort><creationdate>201608</creationdate><title>Convergence of equilibria for numerical approximations of a suspension model</title><author>Valero, J. ; Giménez, A. ; Kapustyan, O.V. ; Kasyanov, P.O. ; Amigó, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-cc3dc5369200a3fad0787204f455fc09aaab0167277380df22f55b70b372d653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Finite-difference schemes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-Newtonian fluids</topic><topic>Numerical approximations</topic><topic>Partial differential equations</topic><topic>Proving</topic><topic>Suspensions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valero, J.</creatorcontrib><creatorcontrib>Giménez, A.</creatorcontrib><creatorcontrib>Kapustyan, O.V.</creatorcontrib><creatorcontrib>Kasyanov, P.O.</creatorcontrib><creatorcontrib>Amigó, J.M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valero, J.</au><au>Giménez, A.</au><au>Kapustyan, O.V.</au><au>Kasyanov, P.O.</au><au>Amigó, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of equilibria for numerical approximations of a suspension model</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2016-08</date><risdate>2016</risdate><volume>72</volume><issue>4</issue><spage>856</spage><epage>878</epage><pages>856-878</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper we study the numerical approximations of a non-Newtonian model for concentrated suspensions. First, we prove that the approximative models possess a unique fixed point and study their convergence to a stationary point of the original equation. Second, we implement an implicit Euler scheme, proving the convergence of these approximations as well. Finally, numerical simulations are provided.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2016.05.034</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6662-0160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2016-08, Vol.72 (4), p.856-878
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1835648654
source ScienceDirect Freedom Collection
subjects Approximation
Computer simulation
Convergence
Finite-difference schemes
Mathematical analysis
Mathematical models
Non-Newtonian fluids
Numerical approximations
Partial differential equations
Proving
Suspensions
title Convergence of equilibria for numerical approximations of a suspension model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20equilibria%20for%20numerical%20approximations%20of%20a%20suspension%20model&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Valero,%20J.&rft.date=2016-08&rft.volume=72&rft.issue=4&rft.spage=856&rft.epage=878&rft.pages=856-878&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2016.05.034&rft_dat=%3Cproquest_cross%3E1835648654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-cc3dc5369200a3fad0787204f455fc09aaab0167277380df22f55b70b372d653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835648654&rft_id=info:pmid/&rfr_iscdi=true