Loading…
Generalized Orlicz spaces and related PDE
We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we esta...
Saved in:
Published in: | Nonlinear analysis 2016-09, Vol.143, p.155-173 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573 |
container_end_page | 173 |
container_issue | |
container_start_page | 155 |
container_title | Nonlinear analysis |
container_volume | 143 |
creator | Harjulehto, Petteri Hästö, Peter Klén, Riku |
description | We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we establish the existence of solutions of the φ-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Φ-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth. |
doi_str_mv | 10.1016/j.na.2016.05.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835654843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X16300670</els_id><sourcerecordid>1835654843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwM2aEIeFsx3bChkopSJXKABKb5dgXyVWaFDtFor--rsrKdCe9953uPUJuKRQUqHxYF70pWNoKEAUAOyMTWimeC0bFOZkAlywXpfy6JFcxrgGAKi4n5H6BPQbT-T26bBU6b_dZ3BqLMTO9ywJ2ZkzK-_P8mly0pot48zen5PNl_jF7zZerxdvsaZlbztSYO1lT1rSqbYQywERZS9G4WgAiOuSKVdxiklpbW9tUnCO1Ij0HRjCwQvEpuTvd3Ybhe4dx1BsfLXad6XHYRU0rLqQoq5InK5ysNgwxBmz1NviNCb-agj62ote6N_rYigahUysJeTwhmCL8eAw6Wo-9RecD2lG7wf8PHwCjtmep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835654843</pqid></control><display><type>article</type><title>Generalized Orlicz spaces and related PDE</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Harjulehto, Petteri ; Hästö, Peter ; Klén, Riku</creator><creatorcontrib>Harjulehto, Petteri ; Hästö, Peter ; Klén, Riku</creatorcontrib><description>We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we establish the existence of solutions of the φ-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Φ-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2016.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Density ; Differential equations ; Dirichlet energy integral ; Existence of solution ; Mathematical analysis ; Musielak–Orlicz spaces ; Nonlinearity ; Nonstandard growth ; Operators ; Orlicz space ; Poincaré inequality ; Sobolev space ; Variable exponent</subject><ispartof>Nonlinear analysis, 2016-09, Vol.143, p.155-173</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573</citedby><cites>FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X16300670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Harjulehto, Petteri</creatorcontrib><creatorcontrib>Hästö, Peter</creatorcontrib><creatorcontrib>Klén, Riku</creatorcontrib><title>Generalized Orlicz spaces and related PDE</title><title>Nonlinear analysis</title><description>We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we establish the existence of solutions of the φ-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Φ-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth.</description><subject>Density</subject><subject>Differential equations</subject><subject>Dirichlet energy integral</subject><subject>Existence of solution</subject><subject>Mathematical analysis</subject><subject>Musielak–Orlicz spaces</subject><subject>Nonlinearity</subject><subject>Nonstandard growth</subject><subject>Operators</subject><subject>Orlicz space</subject><subject>Poincaré inequality</subject><subject>Sobolev space</subject><subject>Variable exponent</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwM2aEIeFsx3bChkopSJXKABKb5dgXyVWaFDtFor--rsrKdCe9953uPUJuKRQUqHxYF70pWNoKEAUAOyMTWimeC0bFOZkAlywXpfy6JFcxrgGAKi4n5H6BPQbT-T26bBU6b_dZ3BqLMTO9ywJ2ZkzK-_P8mly0pot48zen5PNl_jF7zZerxdvsaZlbztSYO1lT1rSqbYQywERZS9G4WgAiOuSKVdxiklpbW9tUnCO1Ij0HRjCwQvEpuTvd3Ybhe4dx1BsfLXad6XHYRU0rLqQoq5InK5ysNgwxBmz1NviNCb-agj62ote6N_rYigahUysJeTwhmCL8eAw6Wo-9RecD2lG7wf8PHwCjtmep</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Harjulehto, Petteri</creator><creator>Hästö, Peter</creator><creator>Klén, Riku</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201609</creationdate><title>Generalized Orlicz spaces and related PDE</title><author>Harjulehto, Petteri ; Hästö, Peter ; Klén, Riku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Density</topic><topic>Differential equations</topic><topic>Dirichlet energy integral</topic><topic>Existence of solution</topic><topic>Mathematical analysis</topic><topic>Musielak–Orlicz spaces</topic><topic>Nonlinearity</topic><topic>Nonstandard growth</topic><topic>Operators</topic><topic>Orlicz space</topic><topic>Poincaré inequality</topic><topic>Sobolev space</topic><topic>Variable exponent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harjulehto, Petteri</creatorcontrib><creatorcontrib>Hästö, Peter</creatorcontrib><creatorcontrib>Klén, Riku</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harjulehto, Petteri</au><au>Hästö, Peter</au><au>Klén, Riku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Orlicz spaces and related PDE</atitle><jtitle>Nonlinear analysis</jtitle><date>2016-09</date><risdate>2016</risdate><volume>143</volume><spage>155</spage><epage>173</epage><pages>155-173</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we establish the existence of solutions of the φ-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Φ-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2016.05.002</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2016-09, Vol.143, p.155-173 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835654843 |
source | ScienceDirect Freedom Collection; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Density Differential equations Dirichlet energy integral Existence of solution Mathematical analysis Musielak–Orlicz spaces Nonlinearity Nonstandard growth Operators Orlicz space Poincaré inequality Sobolev space Variable exponent |
title | Generalized Orlicz spaces and related PDE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Orlicz%20spaces%20and%20related%20PDE&rft.jtitle=Nonlinear%20analysis&rft.au=Harjulehto,%20Petteri&rft.date=2016-09&rft.volume=143&rft.spage=155&rft.epage=173&rft.pages=155-173&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2016.05.002&rft_dat=%3Cproquest_cross%3E1835654843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835654843&rft_id=info:pmid/&rfr_iscdi=true |