Loading…

Generalized Orlicz spaces and related PDE

We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we esta...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2016-09, Vol.143, p.155-173
Main Authors: Harjulehto, Petteri, Hästö, Peter, Klén, Riku
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573
cites cdi_FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573
container_end_page 173
container_issue
container_start_page 155
container_title Nonlinear analysis
container_volume 143
creator Harjulehto, Petteri
Hästö, Peter
Klén, Riku
description We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we establish the existence of solutions of the φ-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Φ-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth.
doi_str_mv 10.1016/j.na.2016.05.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835654843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X16300670</els_id><sourcerecordid>1835654843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwM2aEIeFsx3bChkopSJXKABKb5dgXyVWaFDtFor--rsrKdCe9953uPUJuKRQUqHxYF70pWNoKEAUAOyMTWimeC0bFOZkAlywXpfy6JFcxrgGAKi4n5H6BPQbT-T26bBU6b_dZ3BqLMTO9ywJ2ZkzK-_P8mly0pot48zen5PNl_jF7zZerxdvsaZlbztSYO1lT1rSqbYQywERZS9G4WgAiOuSKVdxiklpbW9tUnCO1Ij0HRjCwQvEpuTvd3Ybhe4dx1BsfLXad6XHYRU0rLqQoq5InK5ysNgwxBmz1NviNCb-agj62ote6N_rYigahUysJeTwhmCL8eAw6Wo-9RecD2lG7wf8PHwCjtmep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835654843</pqid></control><display><type>article</type><title>Generalized Orlicz spaces and related PDE</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Harjulehto, Petteri ; Hästö, Peter ; Klén, Riku</creator><creatorcontrib>Harjulehto, Petteri ; Hästö, Peter ; Klén, Riku</creatorcontrib><description>We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we establish the existence of solutions of the φ-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Φ-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2016.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Density ; Differential equations ; Dirichlet energy integral ; Existence of solution ; Mathematical analysis ; Musielak–Orlicz spaces ; Nonlinearity ; Nonstandard growth ; Operators ; Orlicz space ; Poincaré inequality ; Sobolev space ; Variable exponent</subject><ispartof>Nonlinear analysis, 2016-09, Vol.143, p.155-173</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573</citedby><cites>FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X16300670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Harjulehto, Petteri</creatorcontrib><creatorcontrib>Hästö, Peter</creatorcontrib><creatorcontrib>Klén, Riku</creatorcontrib><title>Generalized Orlicz spaces and related PDE</title><title>Nonlinear analysis</title><description>We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we establish the existence of solutions of the φ-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Φ-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth.</description><subject>Density</subject><subject>Differential equations</subject><subject>Dirichlet energy integral</subject><subject>Existence of solution</subject><subject>Mathematical analysis</subject><subject>Musielak–Orlicz spaces</subject><subject>Nonlinearity</subject><subject>Nonstandard growth</subject><subject>Operators</subject><subject>Orlicz space</subject><subject>Poincaré inequality</subject><subject>Sobolev space</subject><subject>Variable exponent</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwM2aEIeFsx3bChkopSJXKABKb5dgXyVWaFDtFor--rsrKdCe9953uPUJuKRQUqHxYF70pWNoKEAUAOyMTWimeC0bFOZkAlywXpfy6JFcxrgGAKi4n5H6BPQbT-T26bBU6b_dZ3BqLMTO9ywJ2ZkzK-_P8mly0pot48zen5PNl_jF7zZerxdvsaZlbztSYO1lT1rSqbYQywERZS9G4WgAiOuSKVdxiklpbW9tUnCO1Ij0HRjCwQvEpuTvd3Ybhe4dx1BsfLXad6XHYRU0rLqQoq5InK5ysNgwxBmz1NviNCb-agj62ote6N_rYigahUysJeTwhmCL8eAw6Wo-9RecD2lG7wf8PHwCjtmep</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Harjulehto, Petteri</creator><creator>Hästö, Peter</creator><creator>Klén, Riku</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201609</creationdate><title>Generalized Orlicz spaces and related PDE</title><author>Harjulehto, Petteri ; Hästö, Peter ; Klén, Riku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Density</topic><topic>Differential equations</topic><topic>Dirichlet energy integral</topic><topic>Existence of solution</topic><topic>Mathematical analysis</topic><topic>Musielak–Orlicz spaces</topic><topic>Nonlinearity</topic><topic>Nonstandard growth</topic><topic>Operators</topic><topic>Orlicz space</topic><topic>Poincaré inequality</topic><topic>Sobolev space</topic><topic>Variable exponent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harjulehto, Petteri</creatorcontrib><creatorcontrib>Hästö, Peter</creatorcontrib><creatorcontrib>Klén, Riku</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harjulehto, Petteri</au><au>Hästö, Peter</au><au>Klén, Riku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Orlicz spaces and related PDE</atitle><jtitle>Nonlinear analysis</jtitle><date>2016-09</date><risdate>2016</risdate><volume>143</volume><spage>155</spage><epage>173</epage><pages>155-173</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We prove the boundedness of the maximal operator in generalized Orlicz spaces defined on subsets of Rn. The proof is based on an extension result for Φ-functions. We study generalized Sobolev–Orlicz spaces and establish density of smooth functions and the Poincaré inequality. As applications we establish the existence of solutions of the φ-Laplace equation with zero and non-zero right-hand side. Further, we systematize assumptions for Φ-functions and prove several basic tools needed for the study of differential equations of generalized Orlicz growth.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2016.05.002</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2016-09, Vol.143, p.155-173
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1835654843
source ScienceDirect Freedom Collection; Backfile Package - Mathematics (Legacy) [YMT]
subjects Density
Differential equations
Dirichlet energy integral
Existence of solution
Mathematical analysis
Musielak–Orlicz spaces
Nonlinearity
Nonstandard growth
Operators
Orlicz space
Poincaré inequality
Sobolev space
Variable exponent
title Generalized Orlicz spaces and related PDE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Orlicz%20spaces%20and%20related%20PDE&rft.jtitle=Nonlinear%20analysis&rft.au=Harjulehto,%20Petteri&rft.date=2016-09&rft.volume=143&rft.spage=155&rft.epage=173&rft.pages=155-173&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2016.05.002&rft_dat=%3Cproquest_cross%3E1835654843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-d6912bf7fb57a0254965bd950eeede37283ce57afc9ccb833e1c53620a520c573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835654843&rft_id=info:pmid/&rfr_iscdi=true