Loading…
Polymer-coated Boron Doped Diamond Optically Transparent Electrodes for Spectroelectrochemical Sensors
Spectroelectrochemical sensors combine electrochemistry, spectroscopy, and partitioning into a film to provide improved selectivity for the target analyte. The sensor usually consists of an optically transparent electrode (OTE) coated with a charge selective polymer film. The polymer film is chosen...
Saved in:
Published in: | Electroanalysis (New York, N.Y.) N.Y.), 2016-09, Vol.28 (9), p.2228-2236 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spectroelectrochemical sensors combine electrochemistry, spectroscopy, and partitioning into a film to provide improved selectivity for the target analyte. The sensor usually consists of an optically transparent electrode (OTE) coated with a charge selective polymer film. The polymer film is chosen to pre‐concentrate analyte at the OTE surface to improve the sensitivity and provide selectivity against like charged interferences. OTEs such as Indium Tin Oxide (ITO) have been used extensively for spectroelectrochemical sensors, but little is known about the applicability of such sensors using other OTE materials, such as Boron Doped Diamond (BDD). One distinct advantage of BDD OTEs over ITO OTEs is their significant increase in sensitivity for organic compounds, such as 4‐aminophenol and hydroquinone. We have developed absorption and fluorescence‐based sensing methods with a BDD OTE coated with a sulfonated ionomer film, Nafion. This is demonstrated with tris(2,2′‐bipyridyl)ruthenium(II) ion [Ru(bpy)32+] using an attenuated total reflectance (ATR) flow cell setup for both absorption and fluorescence. With a Nafion coated BDD optically transparent thin layer electrode (OTTLE), we developed a fluorescence based sensor for a common polyaromatic hydrocarbon (PAH), 1‐hydroxypyrene (1‐pyOH), achieving a detection limit of 80 nM (17 ppb). This work manifests new sensing applications while broadening the use of spectroelectrochemistry, OTEs, and BDD as an electrode material. |
---|---|
ISSN: | 1040-0397 1521-4109 |
DOI: | 10.1002/elan.201600212 |