Loading…
Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach
In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a...
Saved in:
Published in: | Composite structures 2016-09, Vol.152, p.403-407 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883 |
container_end_page | 407 |
container_issue | |
container_start_page | 403 |
container_title | Composite structures |
container_volume | 152 |
creator | Jung, Jeehyun Seok, Jongwon |
description | In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study. |
doi_str_mv | 10.1016/j.compstruct.2016.05.077 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835663930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822316303920</els_id><sourcerecordid>1835663930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883</originalsourceid><addsrcrecordid>eNqFkMtOxDAMRSMEEsPjH7Jk0-I0TdouAfGSkNjAOvKk7kyGvkhaUP-ewCCxZGXZuvfaPoxxAakAoS93qR26MUx-tlOaxUkKKoWiOGArURZVIqBUh2wFmZZJmWXymJ2EsAOAMhdixdZ3OLnNTNx6tG9844fPacuxx3YJLnDX8xYX8lTzLU3khw31NMyBdxg7hy0PS5ioC3wOrt_wMQ7rpcfOWY7j6Ae02zN21GAb6Py3nrLXu9uXm4fk6fn-8ebqKbFSiSmRmRVFLZXFjCpd5VghYK2trCtR6Vop2eTrda4bsEKtochB2QJIN7mCKitLecou9rlx7ftMYTKdC5baFn9ONqKUSmtZSYjSci-1fgjBU2NG7zr0ixFgvrGanfnDar6xGlAmYo3W672V4isfjrwJ1lFvqXaeorYe3P8hX7YKiKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835663930</pqid></control><display><type>article</type><title>Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jung, Jeehyun ; Seok, Jongwon</creator><creatorcontrib>Jung, Jeehyun ; Seok, Jongwon</creatorcontrib><description>In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2016.05.077</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bonding ; Composite structures ; Compressive properties ; Cooling effects ; Crack propagation ; Fatigue crack growth ; Fracture mechanics ; Functionally graded material ; Heterogeneous material ; Mathematical models ; Peridynamic ; Residual stress</subject><ispartof>Composite structures, 2016-09, Vol.152, p.403-407</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883</citedby><cites>FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jung, Jeehyun</creatorcontrib><creatorcontrib>Seok, Jongwon</creatorcontrib><title>Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach</title><title>Composite structures</title><description>In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.</description><subject>Bonding</subject><subject>Composite structures</subject><subject>Compressive properties</subject><subject>Cooling effects</subject><subject>Crack propagation</subject><subject>Fatigue crack growth</subject><subject>Fracture mechanics</subject><subject>Functionally graded material</subject><subject>Heterogeneous material</subject><subject>Mathematical models</subject><subject>Peridynamic</subject><subject>Residual stress</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOxDAMRSMEEsPjH7Jk0-I0TdouAfGSkNjAOvKk7kyGvkhaUP-ewCCxZGXZuvfaPoxxAakAoS93qR26MUx-tlOaxUkKKoWiOGArURZVIqBUh2wFmZZJmWXymJ2EsAOAMhdixdZ3OLnNTNx6tG9844fPacuxx3YJLnDX8xYX8lTzLU3khw31NMyBdxg7hy0PS5ioC3wOrt_wMQ7rpcfOWY7j6Ae02zN21GAb6Py3nrLXu9uXm4fk6fn-8ebqKbFSiSmRmRVFLZXFjCpd5VghYK2trCtR6Vop2eTrda4bsEKtochB2QJIN7mCKitLecou9rlx7ftMYTKdC5baFn9ONqKUSmtZSYjSci-1fgjBU2NG7zr0ixFgvrGanfnDar6xGlAmYo3W672V4isfjrwJ1lFvqXaeorYe3P8hX7YKiKg</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Jung, Jeehyun</creator><creator>Seok, Jongwon</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160915</creationdate><title>Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach</title><author>Jung, Jeehyun ; Seok, Jongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bonding</topic><topic>Composite structures</topic><topic>Compressive properties</topic><topic>Cooling effects</topic><topic>Crack propagation</topic><topic>Fatigue crack growth</topic><topic>Fracture mechanics</topic><topic>Functionally graded material</topic><topic>Heterogeneous material</topic><topic>Mathematical models</topic><topic>Peridynamic</topic><topic>Residual stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jeehyun</creatorcontrib><creatorcontrib>Seok, Jongwon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jeehyun</au><au>Seok, Jongwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach</atitle><jtitle>Composite structures</jtitle><date>2016-09-15</date><risdate>2016</risdate><volume>152</volume><spage>403</spage><epage>407</epage><pages>403-407</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2016.05.077</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8223 |
ispartof | Composite structures, 2016-09, Vol.152, p.403-407 |
issn | 0263-8223 1879-1085 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835663930 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Bonding Composite structures Compressive properties Cooling effects Crack propagation Fatigue crack growth Fracture mechanics Functionally graded material Heterogeneous material Mathematical models Peridynamic Residual stress |
title | Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20growth%20analysis%20in%20layered%20heterogeneous%20material%20systems%20using%20peridynamic%20approach&rft.jtitle=Composite%20structures&rft.au=Jung,%20Jeehyun&rft.date=2016-09-15&rft.volume=152&rft.spage=403&rft.epage=407&rft.pages=403-407&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2016.05.077&rft_dat=%3Cproquest_cross%3E1835663930%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835663930&rft_id=info:pmid/&rfr_iscdi=true |