Loading…

Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach

In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2016-09, Vol.152, p.403-407
Main Authors: Jung, Jeehyun, Seok, Jongwon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883
cites cdi_FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883
container_end_page 407
container_issue
container_start_page 403
container_title Composite structures
container_volume 152
creator Jung, Jeehyun
Seok, Jongwon
description In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.
doi_str_mv 10.1016/j.compstruct.2016.05.077
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835663930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822316303920</els_id><sourcerecordid>1835663930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883</originalsourceid><addsrcrecordid>eNqFkMtOxDAMRSMEEsPjH7Jk0-I0TdouAfGSkNjAOvKk7kyGvkhaUP-ewCCxZGXZuvfaPoxxAakAoS93qR26MUx-tlOaxUkKKoWiOGArURZVIqBUh2wFmZZJmWXymJ2EsAOAMhdixdZ3OLnNTNx6tG9844fPacuxx3YJLnDX8xYX8lTzLU3khw31NMyBdxg7hy0PS5ioC3wOrt_wMQ7rpcfOWY7j6Ae02zN21GAb6Py3nrLXu9uXm4fk6fn-8ebqKbFSiSmRmRVFLZXFjCpd5VghYK2trCtR6Vop2eTrda4bsEKtochB2QJIN7mCKitLecou9rlx7ftMYTKdC5baFn9ONqKUSmtZSYjSci-1fgjBU2NG7zr0ixFgvrGanfnDar6xGlAmYo3W672V4isfjrwJ1lFvqXaeorYe3P8hX7YKiKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835663930</pqid></control><display><type>article</type><title>Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jung, Jeehyun ; Seok, Jongwon</creator><creatorcontrib>Jung, Jeehyun ; Seok, Jongwon</creatorcontrib><description>In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2016.05.077</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bonding ; Composite structures ; Compressive properties ; Cooling effects ; Crack propagation ; Fatigue crack growth ; Fracture mechanics ; Functionally graded material ; Heterogeneous material ; Mathematical models ; Peridynamic ; Residual stress</subject><ispartof>Composite structures, 2016-09, Vol.152, p.403-407</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883</citedby><cites>FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jung, Jeehyun</creatorcontrib><creatorcontrib>Seok, Jongwon</creatorcontrib><title>Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach</title><title>Composite structures</title><description>In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.</description><subject>Bonding</subject><subject>Composite structures</subject><subject>Compressive properties</subject><subject>Cooling effects</subject><subject>Crack propagation</subject><subject>Fatigue crack growth</subject><subject>Fracture mechanics</subject><subject>Functionally graded material</subject><subject>Heterogeneous material</subject><subject>Mathematical models</subject><subject>Peridynamic</subject><subject>Residual stress</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOxDAMRSMEEsPjH7Jk0-I0TdouAfGSkNjAOvKk7kyGvkhaUP-ewCCxZGXZuvfaPoxxAakAoS93qR26MUx-tlOaxUkKKoWiOGArURZVIqBUh2wFmZZJmWXymJ2EsAOAMhdixdZ3OLnNTNx6tG9844fPacuxx3YJLnDX8xYX8lTzLU3khw31NMyBdxg7hy0PS5ioC3wOrt_wMQ7rpcfOWY7j6Ae02zN21GAb6Py3nrLXu9uXm4fk6fn-8ebqKbFSiSmRmRVFLZXFjCpd5VghYK2trCtR6Vop2eTrda4bsEKtochB2QJIN7mCKitLecou9rlx7ftMYTKdC5baFn9ONqKUSmtZSYjSci-1fgjBU2NG7zr0ixFgvrGanfnDar6xGlAmYo3W672V4isfjrwJ1lFvqXaeorYe3P8hX7YKiKg</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Jung, Jeehyun</creator><creator>Seok, Jongwon</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160915</creationdate><title>Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach</title><author>Jung, Jeehyun ; Seok, Jongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bonding</topic><topic>Composite structures</topic><topic>Compressive properties</topic><topic>Cooling effects</topic><topic>Crack propagation</topic><topic>Fatigue crack growth</topic><topic>Fracture mechanics</topic><topic>Functionally graded material</topic><topic>Heterogeneous material</topic><topic>Mathematical models</topic><topic>Peridynamic</topic><topic>Residual stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jeehyun</creatorcontrib><creatorcontrib>Seok, Jongwon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jeehyun</au><au>Seok, Jongwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach</atitle><jtitle>Composite structures</jtitle><date>2016-09-15</date><risdate>2016</risdate><volume>152</volume><spage>403</spage><epage>407</epage><pages>403-407</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2016.05.077</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2016-09, Vol.152, p.403-407
issn 0263-8223
1879-1085
language eng
recordid cdi_proquest_miscellaneous_1835663930
source ScienceDirect Freedom Collection 2022-2024
subjects Bonding
Composite structures
Compressive properties
Cooling effects
Crack propagation
Fatigue crack growth
Fracture mechanics
Functionally graded material
Heterogeneous material
Mathematical models
Peridynamic
Residual stress
title Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20growth%20analysis%20in%20layered%20heterogeneous%20material%20systems%20using%20peridynamic%20approach&rft.jtitle=Composite%20structures&rft.au=Jung,%20Jeehyun&rft.date=2016-09-15&rft.volume=152&rft.spage=403&rft.epage=407&rft.pages=403-407&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2016.05.077&rft_dat=%3Cproquest_cross%3E1835663930%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-32c17d35ca2e9694a9a0ad6c3d9196d553f4bb46f0c15b07405c70e6f45092883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835663930&rft_id=info:pmid/&rfr_iscdi=true