Loading…

Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model

We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Marko...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2016-09, Vol.17 (9), p.2594-2599
Main Authors: Xing Sun, Yung, Nelson H. C., Lam, Edmund Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3
cites cdi_FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3
container_end_page 2599
container_issue 9
container_start_page 2594
container_title IEEE transactions on intelligent transportation systems
container_volume 17
creator Xing Sun
Yung, Nelson H. C.
Lam, Edmund Y.
description We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Markov assumption, making it particularly suitable for long-term tracking. Moreover, TDSDP prior can estimate the number of trajectories automatically. We first define the TDSDP based on the Cox process and then explain how to construct a TDSDP mixture model from thinning multiple Dirichlet process mixtures (DPMs) with conjugate priors. Next, a Markov chain Monte Carlo sampling inference is presented. Experimental results on synthetic and real-world data demonstrate that the proposed TDSDP mixture is superior to the DPM and the dependent Dirichlet process (DDP) in terms of topic variation modeling. PETS2001 data set experiments show that TDSDP has more robust object tracking capability over DDP based on generalized Polya urn. Low-quality fish data set experiments indicate that the TDSDP excels at solving tracking problems with insufficient features.
doi_str_mv 10.1109/TITS.2016.2518212
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835666293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7420709</ieee_id><sourcerecordid>1835666293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSurOb3SRHaf0otFhoisew2UzM1jSpu4nYf29CxYOnGV6edxgez7sGOgGg8X0yT9YTRkFOmICIATvxRiBE5NM-Ox12FvgxFfTcu3Bu26eBABh5q03tuj3aL-MwJ4lV-sPU7-TNtCVpSySzpsuqA1m3jS6Va40mM2ONLitsyco2Gp0jS_PddhbJssmxuvTOClU5vPqdY2_z9JhMX_zF6_N8-rDwNWey9WUU8_7dnLNCCRpyrYHrgkodZxllgJijZFkmFOdxngUigkxCHvIozrTiqPjYuzve3dvms0PXpjvjNFaVqrHpXAoRF1JKFvMevf2HbpvO1v13PQUCmKCC9RQcKW0b5ywW6d6anbKHFGg6OE4Hx-ngOP113Hdujh2DiH98GDAa0pj_AOdSd6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815125052</pqid></control><display><type>article</type><title>Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xing Sun ; Yung, Nelson H. C. ; Lam, Edmund Y.</creator><creatorcontrib>Xing Sun ; Yung, Nelson H. C. ; Lam, Edmund Y.</creatorcontrib><description>We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Markov assumption, making it particularly suitable for long-term tracking. Moreover, TDSDP prior can estimate the number of trajectories automatically. We first define the TDSDP based on the Cox process and then explain how to construct a TDSDP mixture model from thinning multiple Dirichlet process mixtures (DPMs) with conjugate priors. Next, a Markov chain Monte Carlo sampling inference is presented. Experimental results on synthetic and real-world data demonstrate that the proposed TDSDP mixture is superior to the DPM and the dependent Dirichlet process (DDP) in terms of topic variation modeling. PETS2001 data set experiments show that TDSDP has more robust object tracking capability over DDP based on generalized Polya urn. Low-quality fish data set experiments indicate that the TDSDP excels at solving tracking problems with insufficient features.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2016.2518212</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational modeling ; Dirichlet problem ; doubly stochastic ; Feature extraction ; Gaussian process ; Hidden Markov models ; Inference ; Markov analysis ; Markov processes ; Mixture models ; Monte Carlo methods ; Monte Carlo simulation ; Nonparametric Bayesian ; Sampling ; Stochasticity ; Tracking ; Trajectories ; Trajectory ; unsupervised tracking ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2016-09, Vol.17 (9), p.2594-2599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3</citedby><cites>FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7420709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Xing Sun</creatorcontrib><creatorcontrib>Yung, Nelson H. C.</creatorcontrib><creatorcontrib>Lam, Edmund Y.</creatorcontrib><title>Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Markov assumption, making it particularly suitable for long-term tracking. Moreover, TDSDP prior can estimate the number of trajectories automatically. We first define the TDSDP based on the Cox process and then explain how to construct a TDSDP mixture model from thinning multiple Dirichlet process mixtures (DPMs) with conjugate priors. Next, a Markov chain Monte Carlo sampling inference is presented. Experimental results on synthetic and real-world data demonstrate that the proposed TDSDP mixture is superior to the DPM and the dependent Dirichlet process (DDP) in terms of topic variation modeling. PETS2001 data set experiments show that TDSDP has more robust object tracking capability over DDP based on generalized Polya urn. Low-quality fish data set experiments indicate that the TDSDP excels at solving tracking problems with insufficient features.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Dirichlet problem</subject><subject>doubly stochastic</subject><subject>Feature extraction</subject><subject>Gaussian process</subject><subject>Hidden Markov models</subject><subject>Inference</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mixture models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric Bayesian</subject><subject>Sampling</subject><subject>Stochasticity</subject><subject>Tracking</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>unsupervised tracking</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSurOb3SRHaf0otFhoisew2UzM1jSpu4nYf29CxYOnGV6edxgez7sGOgGg8X0yT9YTRkFOmICIATvxRiBE5NM-Ox12FvgxFfTcu3Bu26eBABh5q03tuj3aL-MwJ4lV-sPU7-TNtCVpSySzpsuqA1m3jS6Va40mM2ONLitsyco2Gp0jS_PddhbJssmxuvTOClU5vPqdY2_z9JhMX_zF6_N8-rDwNWey9WUU8_7dnLNCCRpyrYHrgkodZxllgJijZFkmFOdxngUigkxCHvIozrTiqPjYuzve3dvms0PXpjvjNFaVqrHpXAoRF1JKFvMevf2HbpvO1v13PQUCmKCC9RQcKW0b5ywW6d6anbKHFGg6OE4Hx-ngOP113Hdujh2DiH98GDAa0pj_AOdSd6I</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Xing Sun</creator><creator>Yung, Nelson H. C.</creator><creator>Lam, Edmund Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160901</creationdate><title>Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model</title><author>Xing Sun ; Yung, Nelson H. C. ; Lam, Edmund Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Dirichlet problem</topic><topic>doubly stochastic</topic><topic>Feature extraction</topic><topic>Gaussian process</topic><topic>Hidden Markov models</topic><topic>Inference</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mixture models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric Bayesian</topic><topic>Sampling</topic><topic>Stochasticity</topic><topic>Tracking</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>unsupervised tracking</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing Sun</creatorcontrib><creatorcontrib>Yung, Nelson H. C.</creatorcontrib><creatorcontrib>Lam, Edmund Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing Sun</au><au>Yung, Nelson H. C.</au><au>Lam, Edmund Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>17</volume><issue>9</issue><spage>2594</spage><epage>2599</epage><pages>2594-2599</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Markov assumption, making it particularly suitable for long-term tracking. Moreover, TDSDP prior can estimate the number of trajectories automatically. We first define the TDSDP based on the Cox process and then explain how to construct a TDSDP mixture model from thinning multiple Dirichlet process mixtures (DPMs) with conjugate priors. Next, a Markov chain Monte Carlo sampling inference is presented. Experimental results on synthetic and real-world data demonstrate that the proposed TDSDP mixture is superior to the DPM and the dependent Dirichlet process (DDP) in terms of topic variation modeling. PETS2001 data set experiments show that TDSDP has more robust object tracking capability over DDP based on generalized Polya urn. Low-quality fish data set experiments indicate that the TDSDP excels at solving tracking problems with insufficient features.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2016.2518212</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2016-09, Vol.17 (9), p.2594-2599
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_miscellaneous_1835666293
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Computational modeling
Dirichlet problem
doubly stochastic
Feature extraction
Gaussian process
Hidden Markov models
Inference
Markov analysis
Markov processes
Mixture models
Monte Carlo methods
Monte Carlo simulation
Nonparametric Bayesian
Sampling
Stochasticity
Tracking
Trajectories
Trajectory
unsupervised tracking
Vehicles
title Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Tracking%20With%20the%20Doubly%20Stochastic%20Dirichlet%20Process%20Mixture%20Model&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Xing%20Sun&rft.date=2016-09-01&rft.volume=17&rft.issue=9&rft.spage=2594&rft.epage=2599&rft.pages=2594-2599&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2016.2518212&rft_dat=%3Cproquest_cross%3E1835666293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815125052&rft_id=info:pmid/&rft_ieee_id=7420709&rfr_iscdi=true