Loading…
Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model
We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Marko...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2016-09, Vol.17 (9), p.2594-2599 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3 |
container_end_page | 2599 |
container_issue | 9 |
container_start_page | 2594 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 17 |
creator | Xing Sun Yung, Nelson H. C. Lam, Edmund Y. |
description | We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Markov assumption, making it particularly suitable for long-term tracking. Moreover, TDSDP prior can estimate the number of trajectories automatically. We first define the TDSDP based on the Cox process and then explain how to construct a TDSDP mixture model from thinning multiple Dirichlet process mixtures (DPMs) with conjugate priors. Next, a Markov chain Monte Carlo sampling inference is presented. Experimental results on synthetic and real-world data demonstrate that the proposed TDSDP mixture is superior to the DPM and the dependent Dirichlet process (DDP) in terms of topic variation modeling. PETS2001 data set experiments show that TDSDP has more robust object tracking capability over DDP based on generalized Polya urn. Low-quality fish data set experiments indicate that the TDSDP excels at solving tracking problems with insufficient features. |
doi_str_mv | 10.1109/TITS.2016.2518212 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835666293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7420709</ieee_id><sourcerecordid>1835666293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSurOb3SRHaf0otFhoisew2UzM1jSpu4nYf29CxYOnGV6edxgez7sGOgGg8X0yT9YTRkFOmICIATvxRiBE5NM-Ox12FvgxFfTcu3Bu26eBABh5q03tuj3aL-MwJ4lV-sPU7-TNtCVpSySzpsuqA1m3jS6Va40mM2ONLitsyco2Gp0jS_PddhbJssmxuvTOClU5vPqdY2_z9JhMX_zF6_N8-rDwNWey9WUU8_7dnLNCCRpyrYHrgkodZxllgJijZFkmFOdxngUigkxCHvIozrTiqPjYuzve3dvms0PXpjvjNFaVqrHpXAoRF1JKFvMevf2HbpvO1v13PQUCmKCC9RQcKW0b5ywW6d6anbKHFGg6OE4Hx-ngOP113Hdujh2DiH98GDAa0pj_AOdSd6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815125052</pqid></control><display><type>article</type><title>Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xing Sun ; Yung, Nelson H. C. ; Lam, Edmund Y.</creator><creatorcontrib>Xing Sun ; Yung, Nelson H. C. ; Lam, Edmund Y.</creatorcontrib><description>We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Markov assumption, making it particularly suitable for long-term tracking. Moreover, TDSDP prior can estimate the number of trajectories automatically. We first define the TDSDP based on the Cox process and then explain how to construct a TDSDP mixture model from thinning multiple Dirichlet process mixtures (DPMs) with conjugate priors. Next, a Markov chain Monte Carlo sampling inference is presented. Experimental results on synthetic and real-world data demonstrate that the proposed TDSDP mixture is superior to the DPM and the dependent Dirichlet process (DDP) in terms of topic variation modeling. PETS2001 data set experiments show that TDSDP has more robust object tracking capability over DDP based on generalized Polya urn. Low-quality fish data set experiments indicate that the TDSDP excels at solving tracking problems with insufficient features.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2016.2518212</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational modeling ; Dirichlet problem ; doubly stochastic ; Feature extraction ; Gaussian process ; Hidden Markov models ; Inference ; Markov analysis ; Markov processes ; Mixture models ; Monte Carlo methods ; Monte Carlo simulation ; Nonparametric Bayesian ; Sampling ; Stochasticity ; Tracking ; Trajectories ; Trajectory ; unsupervised tracking ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2016-09, Vol.17 (9), p.2594-2599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3</citedby><cites>FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7420709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Xing Sun</creatorcontrib><creatorcontrib>Yung, Nelson H. C.</creatorcontrib><creatorcontrib>Lam, Edmund Y.</creatorcontrib><title>Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Markov assumption, making it particularly suitable for long-term tracking. Moreover, TDSDP prior can estimate the number of trajectories automatically. We first define the TDSDP based on the Cox process and then explain how to construct a TDSDP mixture model from thinning multiple Dirichlet process mixtures (DPMs) with conjugate priors. Next, a Markov chain Monte Carlo sampling inference is presented. Experimental results on synthetic and real-world data demonstrate that the proposed TDSDP mixture is superior to the DPM and the dependent Dirichlet process (DDP) in terms of topic variation modeling. PETS2001 data set experiments show that TDSDP has more robust object tracking capability over DDP based on generalized Polya urn. Low-quality fish data set experiments indicate that the TDSDP excels at solving tracking problems with insufficient features.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Dirichlet problem</subject><subject>doubly stochastic</subject><subject>Feature extraction</subject><subject>Gaussian process</subject><subject>Hidden Markov models</subject><subject>Inference</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mixture models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric Bayesian</subject><subject>Sampling</subject><subject>Stochasticity</subject><subject>Tracking</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>unsupervised tracking</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSurOb3SRHaf0otFhoisew2UzM1jSpu4nYf29CxYOnGV6edxgez7sGOgGg8X0yT9YTRkFOmICIATvxRiBE5NM-Ox12FvgxFfTcu3Bu26eBABh5q03tuj3aL-MwJ4lV-sPU7-TNtCVpSySzpsuqA1m3jS6Va40mM2ONLitsyco2Gp0jS_PddhbJssmxuvTOClU5vPqdY2_z9JhMX_zF6_N8-rDwNWey9WUU8_7dnLNCCRpyrYHrgkodZxllgJijZFkmFOdxngUigkxCHvIozrTiqPjYuzve3dvms0PXpjvjNFaVqrHpXAoRF1JKFvMevf2HbpvO1v13PQUCmKCC9RQcKW0b5ywW6d6anbKHFGg6OE4Hx-ngOP113Hdujh2DiH98GDAa0pj_AOdSd6I</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Xing Sun</creator><creator>Yung, Nelson H. C.</creator><creator>Lam, Edmund Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160901</creationdate><title>Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model</title><author>Xing Sun ; Yung, Nelson H. C. ; Lam, Edmund Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Dirichlet problem</topic><topic>doubly stochastic</topic><topic>Feature extraction</topic><topic>Gaussian process</topic><topic>Hidden Markov models</topic><topic>Inference</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mixture models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric Bayesian</topic><topic>Sampling</topic><topic>Stochasticity</topic><topic>Tracking</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>unsupervised tracking</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing Sun</creatorcontrib><creatorcontrib>Yung, Nelson H. C.</creatorcontrib><creatorcontrib>Lam, Edmund Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing Sun</au><au>Yung, Nelson H. C.</au><au>Lam, Edmund Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>17</volume><issue>9</issue><spage>2594</spage><epage>2599</epage><pages>2594-2599</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>We present an unsupervised tracking algorithm for human and car trajectory detection, using what is called the temporal doubly stochastic Dirichlet process (TDSDP) mixture model. The TDSDP captures the global dependence and the variation of human crowds and cars in temporal domains without the Markov assumption, making it particularly suitable for long-term tracking. Moreover, TDSDP prior can estimate the number of trajectories automatically. We first define the TDSDP based on the Cox process and then explain how to construct a TDSDP mixture model from thinning multiple Dirichlet process mixtures (DPMs) with conjugate priors. Next, a Markov chain Monte Carlo sampling inference is presented. Experimental results on synthetic and real-world data demonstrate that the proposed TDSDP mixture is superior to the DPM and the dependent Dirichlet process (DDP) in terms of topic variation modeling. PETS2001 data set experiments show that TDSDP has more robust object tracking capability over DDP based on generalized Polya urn. Low-quality fish data set experiments indicate that the TDSDP excels at solving tracking problems with insufficient features.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2016.2518212</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2016-09, Vol.17 (9), p.2594-2599 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835666293 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Computational modeling Dirichlet problem doubly stochastic Feature extraction Gaussian process Hidden Markov models Inference Markov analysis Markov processes Mixture models Monte Carlo methods Monte Carlo simulation Nonparametric Bayesian Sampling Stochasticity Tracking Trajectories Trajectory unsupervised tracking Vehicles |
title | Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Tracking%20With%20the%20Doubly%20Stochastic%20Dirichlet%20Process%20Mixture%20Model&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Xing%20Sun&rft.date=2016-09-01&rft.volume=17&rft.issue=9&rft.spage=2594&rft.epage=2599&rft.pages=2594-2599&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2016.2518212&rft_dat=%3Cproquest_cross%3E1835666293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-6893201d32fa5073cc13cf06c9bb021eede62bb5a339db4581b61d7389bca3ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815125052&rft_id=info:pmid/&rft_ieee_id=7420709&rfr_iscdi=true |