Loading…

A dynamic unreliability assessment and optimal maintenance strategies for multistate weighted k-out-of-n:F systems

In this paper, a dynamic evaluation of the multistate weighted k‐out‐of‐n:F system is presented in an unreliability viewpoint. The expected failure cost of components is used as an unreliability index. Using failure cost provides an opportunity to employ financial concepts in system unreliability es...

Full description

Saved in:
Bibliographic Details
Published in:Applied stochastic models in business and industry 2016-07, Vol.32 (4), p.485-493
Main Authors: Khorshidi, Hadi Akbarzade, Gunawan, Indra, Ibrahim, Yousef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a dynamic evaluation of the multistate weighted k‐out‐of‐n:F system is presented in an unreliability viewpoint. The expected failure cost of components is used as an unreliability index. Using failure cost provides an opportunity to employ financial concepts in system unreliability estimation. Hence, system unreliability and system cost can be compared easily in order to making decision. The components' probabilities are computed over time to model the dynamic behavior of the system. The whole system has been assessed by recursive algorithm approach. As a result, a bi‐objective optimization model can be developed to find optimal decisions on maintenance strategies. Finally, the application of the proposed model is investigated via a transportation system case. Matlab programming is developed for the case, and genetic algorithm is used to solve the optimization model. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:1524-1904
1526-4025
DOI:10.1002/asmb.2173