Loading…
An estimation of the yield and response functions for the mini neutron monitor
The present study estimates the yield and response functions of the mini neutron monitor (miniNM). This relatively new cosmic ray detector is the mobile version of the standard NM64. It can be use not only to calibrate the NM64 but also to study the modulation processes. Due to its portability, the...
Saved in:
Published in: | Journal of geophysical research. Space physics 2016-08, Vol.121 (8), p.7461-7469 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study estimates the yield and response functions of the mini neutron monitor (miniNM). This relatively new cosmic ray detector is the mobile version of the standard NM64. It can be use not only to calibrate the NM64 but also to study the modulation processes. Due to its portability, the miniNM can be easily placed in a suitable location to measure secondary particles, which give information about the intensity variations of galactic and solar cosmic rays. In order to perform these modulation studies with miniNMs, it is crucial to know their sensitivity to detect secondary cosmic ray flux, i.e., we must know their yield function. A previous study found that miniNM and NM64 have slightly different response functions. This work analyzes the observed counting rate ratio (miniNM to NM64) and gives for the first time an useful expression for the yield function of the miniNM. The results found here will allow to interpret the new measurements with this mobile neutron monitor. For comparison, a brief summary of the NM64 yield functions reported by other authors is presented.
Key Points
Yield function estimation for the mini neutron monitor
Response of the mini neutron monitor
Useful expression for analysis of new measurements |
---|---|
ISSN: | 2169-9380 2169-9402 |
DOI: | 10.1002/2016JA022690 |