Loading…

The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN)

[Display omitted] Solid lipid microparticles (SLM) were produced by a two-step process that, firstly, involved the emulsification of the molten lipid phase in a heated aqueous phase and, secondly, the system cooling. Compritol 888 ATO and Precirol ATO 5, including their mixtures with Miglyol 812 or...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutics and biopharmaceutics 2017-01, Vol.110, p.24-30
Main Authors: Sznitowska, Malgorzata, Wolska, Eliza, Baranska, Helena, Cal, Krzysztof, Pietkiewicz, Justyna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-986f43c37382c8bd1d398595197f90fc1a03cae28746938fb8a847560fcb90973
cites cdi_FETCH-LOGICAL-c356t-986f43c37382c8bd1d398595197f90fc1a03cae28746938fb8a847560fcb90973
container_end_page 30
container_issue
container_start_page 24
container_title European journal of pharmaceutics and biopharmaceutics
container_volume 110
creator Sznitowska, Malgorzata
Wolska, Eliza
Baranska, Helena
Cal, Krzysztof
Pietkiewicz, Justyna
description [Display omitted] Solid lipid microparticles (SLM) were produced by a two-step process that, firstly, involved the emulsification of the molten lipid phase in a heated aqueous phase and, secondly, the system cooling. Compritol 888 ATO and Precirol ATO 5, including their mixtures with Miglyol 812 or Witepsol H15 were used as lipid components (10–30% w/w). The average size of the SLM prepared with Compritol and Tween 80 as an emulsifier was 3–7μm and the influence of lipid concentration and thermal sterilization was not large. Dispersions of SLM with Precirol (10–20% w/w) gellified upon storage. SLM stabilized with another surfactant, Tego Care 450, were larger in size and measured 40μm on average. The use of the sonication step (5–15min) in hot formulations containing 5% w/w of Compritol resulted in the formation of the solid lipid nanoparticles (SLN) with average size 200–300nm. The smallest SLN size (below 100nm on average) was obtained in SLN that contained Tego Care and an antimicrobial agent Euxyl PE 9010; such combination evoked synergism between the surfactant and Euxyl components.
doi_str_mv 10.1016/j.ejpb.2016.10.023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1836732433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0939641116307603</els_id><sourcerecordid>1836732433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-986f43c37382c8bd1d398595197f90fc1a03cae28746938fb8a847560fcb90973</originalsourceid><addsrcrecordid>eNp9kc1OxCAUhYnROOPPC7gwXeqiI5S2QOLGTPxLRl2oa0LpJcOkLRU6Jj6Bry2d0Vm6Ag7nfMm9B6EzgmcEk_JqNYNVX82yeI_CDGd0D00JZzSleU720RQLKtIyJ2SCjkJYYYxzVvBDNMkYJwVhbIq-35aQgDGgh8SZRCWN7W2daNf2LtjBui5RXR31sPZG6UF10dclQ0zppfJRAW_DYHUY46McXBMBW0xrtXehX4KHsOF0qtu9L14XTxvxdfF8eYIOjGoCnP6ex-j97vZt_pAuXu4f5zeLVNOiHFLBS5NTTRnlmeZVTWoqeCEKIpgR2GiiMNUKMs7yUlBuKq54nLmMX5XAgtFjdLHl9t59rCEMsrVBQ9OoDtw6SMJpyWiWUxqt2dY6zhA8GNl72yr_JQmWYwFyJccC5FjAqMUCYuj8l7-uWqh3kb-NR8P11gBxyk8LXgZtodNQWx9LkLWz__F_AJBdlu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836732433</pqid></control><display><type>article</type><title>The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN)</title><source>Elsevier</source><creator>Sznitowska, Malgorzata ; Wolska, Eliza ; Baranska, Helena ; Cal, Krzysztof ; Pietkiewicz, Justyna</creator><creatorcontrib>Sznitowska, Malgorzata ; Wolska, Eliza ; Baranska, Helena ; Cal, Krzysztof ; Pietkiewicz, Justyna</creatorcontrib><description>[Display omitted] Solid lipid microparticles (SLM) were produced by a two-step process that, firstly, involved the emulsification of the molten lipid phase in a heated aqueous phase and, secondly, the system cooling. Compritol 888 ATO and Precirol ATO 5, including their mixtures with Miglyol 812 or Witepsol H15 were used as lipid components (10–30% w/w). The average size of the SLM prepared with Compritol and Tween 80 as an emulsifier was 3–7μm and the influence of lipid concentration and thermal sterilization was not large. Dispersions of SLM with Precirol (10–20% w/w) gellified upon storage. SLM stabilized with another surfactant, Tego Care 450, were larger in size and measured 40μm on average. The use of the sonication step (5–15min) in hot formulations containing 5% w/w of Compritol resulted in the formation of the solid lipid nanoparticles (SLN) with average size 200–300nm. The smallest SLN size (below 100nm on average) was obtained in SLN that contained Tego Care and an antimicrobial agent Euxyl PE 9010; such combination evoked synergism between the surfactant and Euxyl components.</description><identifier>ISSN: 0939-6411</identifier><identifier>EISSN: 1873-3441</identifier><identifier>DOI: 10.1016/j.ejpb.2016.10.023</identifier><identifier>PMID: 27815177</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biomechanical Phenomena ; Diglycerides - chemistry ; Fatty Acids - chemistry ; Hot Temperature ; Lipids ; Lipids - chemistry ; Microparticles ; Microscopy ; Microspheres ; Nanoparticles - chemistry ; Nanospheres - chemistry ; Particle Size ; Polysorbates - chemistry ; Pressure ; Pulmonary Surfactants - chemistry ; Solid lipid nanoparticles ; Surface-Active Agents - chemistry ; Surfactants ; Triglycerides - chemistry ; Ultrasound ; Viscosity</subject><ispartof>European journal of pharmaceutics and biopharmaceutics, 2017-01, Vol.110, p.24-30</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-986f43c37382c8bd1d398595197f90fc1a03cae28746938fb8a847560fcb90973</citedby><cites>FETCH-LOGICAL-c356t-986f43c37382c8bd1d398595197f90fc1a03cae28746938fb8a847560fcb90973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27815177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sznitowska, Malgorzata</creatorcontrib><creatorcontrib>Wolska, Eliza</creatorcontrib><creatorcontrib>Baranska, Helena</creatorcontrib><creatorcontrib>Cal, Krzysztof</creatorcontrib><creatorcontrib>Pietkiewicz, Justyna</creatorcontrib><title>The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN)</title><title>European journal of pharmaceutics and biopharmaceutics</title><addtitle>Eur J Pharm Biopharm</addtitle><description>[Display omitted] Solid lipid microparticles (SLM) were produced by a two-step process that, firstly, involved the emulsification of the molten lipid phase in a heated aqueous phase and, secondly, the system cooling. Compritol 888 ATO and Precirol ATO 5, including their mixtures with Miglyol 812 or Witepsol H15 were used as lipid components (10–30% w/w). The average size of the SLM prepared with Compritol and Tween 80 as an emulsifier was 3–7μm and the influence of lipid concentration and thermal sterilization was not large. Dispersions of SLM with Precirol (10–20% w/w) gellified upon storage. SLM stabilized with another surfactant, Tego Care 450, were larger in size and measured 40μm on average. The use of the sonication step (5–15min) in hot formulations containing 5% w/w of Compritol resulted in the formation of the solid lipid nanoparticles (SLN) with average size 200–300nm. The smallest SLN size (below 100nm on average) was obtained in SLN that contained Tego Care and an antimicrobial agent Euxyl PE 9010; such combination evoked synergism between the surfactant and Euxyl components.</description><subject>Biomechanical Phenomena</subject><subject>Diglycerides - chemistry</subject><subject>Fatty Acids - chemistry</subject><subject>Hot Temperature</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Microparticles</subject><subject>Microscopy</subject><subject>Microspheres</subject><subject>Nanoparticles - chemistry</subject><subject>Nanospheres - chemistry</subject><subject>Particle Size</subject><subject>Polysorbates - chemistry</subject><subject>Pressure</subject><subject>Pulmonary Surfactants - chemistry</subject><subject>Solid lipid nanoparticles</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surfactants</subject><subject>Triglycerides - chemistry</subject><subject>Ultrasound</subject><subject>Viscosity</subject><issn>0939-6411</issn><issn>1873-3441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc1OxCAUhYnROOPPC7gwXeqiI5S2QOLGTPxLRl2oa0LpJcOkLRU6Jj6Bry2d0Vm6Ag7nfMm9B6EzgmcEk_JqNYNVX82yeI_CDGd0D00JZzSleU720RQLKtIyJ2SCjkJYYYxzVvBDNMkYJwVhbIq-35aQgDGgh8SZRCWN7W2daNf2LtjBui5RXR31sPZG6UF10dclQ0zppfJRAW_DYHUY46McXBMBW0xrtXehX4KHsOF0qtu9L14XTxvxdfF8eYIOjGoCnP6ex-j97vZt_pAuXu4f5zeLVNOiHFLBS5NTTRnlmeZVTWoqeCEKIpgR2GiiMNUKMs7yUlBuKq54nLmMX5XAgtFjdLHl9t59rCEMsrVBQ9OoDtw6SMJpyWiWUxqt2dY6zhA8GNl72yr_JQmWYwFyJccC5FjAqMUCYuj8l7-uWqh3kb-NR8P11gBxyk8LXgZtodNQWx9LkLWz__F_AJBdlu8</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Sznitowska, Malgorzata</creator><creator>Wolska, Eliza</creator><creator>Baranska, Helena</creator><creator>Cal, Krzysztof</creator><creator>Pietkiewicz, Justyna</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN)</title><author>Sznitowska, Malgorzata ; Wolska, Eliza ; Baranska, Helena ; Cal, Krzysztof ; Pietkiewicz, Justyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-986f43c37382c8bd1d398595197f90fc1a03cae28746938fb8a847560fcb90973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomechanical Phenomena</topic><topic>Diglycerides - chemistry</topic><topic>Fatty Acids - chemistry</topic><topic>Hot Temperature</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Microparticles</topic><topic>Microscopy</topic><topic>Microspheres</topic><topic>Nanoparticles - chemistry</topic><topic>Nanospheres - chemistry</topic><topic>Particle Size</topic><topic>Polysorbates - chemistry</topic><topic>Pressure</topic><topic>Pulmonary Surfactants - chemistry</topic><topic>Solid lipid nanoparticles</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surfactants</topic><topic>Triglycerides - chemistry</topic><topic>Ultrasound</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sznitowska, Malgorzata</creatorcontrib><creatorcontrib>Wolska, Eliza</creatorcontrib><creatorcontrib>Baranska, Helena</creatorcontrib><creatorcontrib>Cal, Krzysztof</creatorcontrib><creatorcontrib>Pietkiewicz, Justyna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmaceutics and biopharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sznitowska, Malgorzata</au><au>Wolska, Eliza</au><au>Baranska, Helena</au><au>Cal, Krzysztof</au><au>Pietkiewicz, Justyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN)</atitle><jtitle>European journal of pharmaceutics and biopharmaceutics</jtitle><addtitle>Eur J Pharm Biopharm</addtitle><date>2017-01</date><risdate>2017</risdate><volume>110</volume><spage>24</spage><epage>30</epage><pages>24-30</pages><issn>0939-6411</issn><eissn>1873-3441</eissn><abstract>[Display omitted] Solid lipid microparticles (SLM) were produced by a two-step process that, firstly, involved the emulsification of the molten lipid phase in a heated aqueous phase and, secondly, the system cooling. Compritol 888 ATO and Precirol ATO 5, including their mixtures with Miglyol 812 or Witepsol H15 were used as lipid components (10–30% w/w). The average size of the SLM prepared with Compritol and Tween 80 as an emulsifier was 3–7μm and the influence of lipid concentration and thermal sterilization was not large. Dispersions of SLM with Precirol (10–20% w/w) gellified upon storage. SLM stabilized with another surfactant, Tego Care 450, were larger in size and measured 40μm on average. The use of the sonication step (5–15min) in hot formulations containing 5% w/w of Compritol resulted in the formation of the solid lipid nanoparticles (SLN) with average size 200–300nm. The smallest SLN size (below 100nm on average) was obtained in SLN that contained Tego Care and an antimicrobial agent Euxyl PE 9010; such combination evoked synergism between the surfactant and Euxyl components.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27815177</pmid><doi>10.1016/j.ejpb.2016.10.023</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-6411
ispartof European journal of pharmaceutics and biopharmaceutics, 2017-01, Vol.110, p.24-30
issn 0939-6411
1873-3441
language eng
recordid cdi_proquest_miscellaneous_1836732433
source Elsevier
subjects Biomechanical Phenomena
Diglycerides - chemistry
Fatty Acids - chemistry
Hot Temperature
Lipids
Lipids - chemistry
Microparticles
Microscopy
Microspheres
Nanoparticles - chemistry
Nanospheres - chemistry
Particle Size
Polysorbates - chemistry
Pressure
Pulmonary Surfactants - chemistry
Solid lipid nanoparticles
Surface-Active Agents - chemistry
Surfactants
Triglycerides - chemistry
Ultrasound
Viscosity
title The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20a%20lipid%20composition%20and%20a%20surfactant%20on%20the%20characteristics%20of%20the%20solid%20lipid%20microspheres%20and%20nanospheres%20(SLM%20and%20SLN)&rft.jtitle=European%20journal%20of%20pharmaceutics%20and%20biopharmaceutics&rft.au=Sznitowska,%20Malgorzata&rft.date=2017-01&rft.volume=110&rft.spage=24&rft.epage=30&rft.pages=24-30&rft.issn=0939-6411&rft.eissn=1873-3441&rft_id=info:doi/10.1016/j.ejpb.2016.10.023&rft_dat=%3Cproquest_cross%3E1836732433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-986f43c37382c8bd1d398595197f90fc1a03cae28746938fb8a847560fcb90973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836732433&rft_id=info:pmid/27815177&rfr_iscdi=true