Loading…
Effects and mechanisms of H sub(2)O sub(2) on production of dicarboxylic acid
The system of producing long chain dicarboxylic acid (DCA) by Candida tropicalis is an aerobic and viscous fermentation system. A method to overcome the gas-liquid transport resistance and to increase oxygen supply is by adding hydrogen peroxide (H sub(2)O sub(2)) to the fermentation system. Here we...
Saved in:
Published in: | Biotechnology and bioengineering 2001-11, Vol.75 (4), p.456-462 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 462 |
container_issue | 4 |
container_start_page | 456 |
container_title | Biotechnology and bioengineering |
container_volume | 75 |
creator | Jiao, Peng Huang, Yingming Li, Shuliang Hua, Yutao Cao, Zhu'an |
description | The system of producing long chain dicarboxylic acid (DCA) by Candida tropicalis is an aerobic and viscous fermentation system. A method to overcome the gas-liquid transport resistance and to increase oxygen supply is by adding hydrogen peroxide (H sub(2)O sub(2)) to the fermentation system. Here we report that the H sub(2)O sub(2) not only can enhance the oxygen supply but also change the metabolism by inducing cytochrome P450, the key enzyme of a, o-oxidation. When C. tropicalis was cultivated in a 3-L bioreactor using the combination of aeration and H sub(2)O sub(2) feeding, DCA production rates increased by about 10% after a short period of decrease at the beginning. Furthermore, the experiments showed that the maximum activities of P450 could be induced at 2 mM H sub(2)O sub(2), and the inducible mechanisms are also discussed. Moreover, we suggest that alkane might be oxidized through the "peroxide shunt pathway" when H sub(2)O sub(2) is present. By adding H sub(2)O sub(2), the DCA yield in a 22-L bioreactor could increase by 25.3% and reach 153.9 g/L. |
doi_str_mv | 10.1002/bit.10027 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_18369751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18369751</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_183697513</originalsourceid><addsrcrecordid>eNqNi70OgjAURjtoIv4MvsGdjA5qC6HAbDAsxsWdlLbEGmiVSxN9e4nhAZzO-ZLzEbJm9MAoDY-V6X-STEhAKeX7KM7CGZkjPoaZpJwH5JLXtZY9grAKWi3vwhpsEVwNBaCvtuHuOhKchWfnlJe9GXQolJGiq9z70xgJQhq1JNNaNKhXIxdkc85vp2I__F5eY1-2BqVuGmG181iyNOJZErPo7_ALIchC4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18369751</pqid></control><display><type>article</type><title>Effects and mechanisms of H sub(2)O sub(2) on production of dicarboxylic acid</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Jiao, Peng ; Huang, Yingming ; Li, Shuliang ; Hua, Yutao ; Cao, Zhu'an</creator><creatorcontrib>Jiao, Peng ; Huang, Yingming ; Li, Shuliang ; Hua, Yutao ; Cao, Zhu'an</creatorcontrib><description>The system of producing long chain dicarboxylic acid (DCA) by Candida tropicalis is an aerobic and viscous fermentation system. A method to overcome the gas-liquid transport resistance and to increase oxygen supply is by adding hydrogen peroxide (H sub(2)O sub(2)) to the fermentation system. Here we report that the H sub(2)O sub(2) not only can enhance the oxygen supply but also change the metabolism by inducing cytochrome P450, the key enzyme of a, o-oxidation. When C. tropicalis was cultivated in a 3-L bioreactor using the combination of aeration and H sub(2)O sub(2) feeding, DCA production rates increased by about 10% after a short period of decrease at the beginning. Furthermore, the experiments showed that the maximum activities of P450 could be induced at 2 mM H sub(2)O sub(2), and the inducible mechanisms are also discussed. Moreover, we suggest that alkane might be oxidized through the "peroxide shunt pathway" when H sub(2)O sub(2) is present. By adding H sub(2)O sub(2), the DCA yield in a 22-L bioreactor could increase by 25.3% and reach 153.9 g/L.</description><identifier>ISSN: 0006-3592</identifier><identifier>DOI: 10.1002/bit.10027</identifier><language>eng</language><ispartof>Biotechnology and bioengineering, 2001-11, Vol.75 (4), p.456-462</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jiao, Peng</creatorcontrib><creatorcontrib>Huang, Yingming</creatorcontrib><creatorcontrib>Li, Shuliang</creatorcontrib><creatorcontrib>Hua, Yutao</creatorcontrib><creatorcontrib>Cao, Zhu'an</creatorcontrib><title>Effects and mechanisms of H sub(2)O sub(2) on production of dicarboxylic acid</title><title>Biotechnology and bioengineering</title><description>The system of producing long chain dicarboxylic acid (DCA) by Candida tropicalis is an aerobic and viscous fermentation system. A method to overcome the gas-liquid transport resistance and to increase oxygen supply is by adding hydrogen peroxide (H sub(2)O sub(2)) to the fermentation system. Here we report that the H sub(2)O sub(2) not only can enhance the oxygen supply but also change the metabolism by inducing cytochrome P450, the key enzyme of a, o-oxidation. When C. tropicalis was cultivated in a 3-L bioreactor using the combination of aeration and H sub(2)O sub(2) feeding, DCA production rates increased by about 10% after a short period of decrease at the beginning. Furthermore, the experiments showed that the maximum activities of P450 could be induced at 2 mM H sub(2)O sub(2), and the inducible mechanisms are also discussed. Moreover, we suggest that alkane might be oxidized through the "peroxide shunt pathway" when H sub(2)O sub(2) is present. By adding H sub(2)O sub(2), the DCA yield in a 22-L bioreactor could increase by 25.3% and reach 153.9 g/L.</description><issn>0006-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNi70OgjAURjtoIv4MvsGdjA5qC6HAbDAsxsWdlLbEGmiVSxN9e4nhAZzO-ZLzEbJm9MAoDY-V6X-STEhAKeX7KM7CGZkjPoaZpJwH5JLXtZY9grAKWi3vwhpsEVwNBaCvtuHuOhKchWfnlJe9GXQolJGiq9z70xgJQhq1JNNaNKhXIxdkc85vp2I__F5eY1-2BqVuGmG181iyNOJZErPo7_ALIchC4Q</recordid><startdate>20011120</startdate><enddate>20011120</enddate><creator>Jiao, Peng</creator><creator>Huang, Yingming</creator><creator>Li, Shuliang</creator><creator>Hua, Yutao</creator><creator>Cao, Zhu'an</creator><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20011120</creationdate><title>Effects and mechanisms of H sub(2)O sub(2) on production of dicarboxylic acid</title><author>Jiao, Peng ; Huang, Yingming ; Li, Shuliang ; Hua, Yutao ; Cao, Zhu'an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_183697513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Peng</creatorcontrib><creatorcontrib>Huang, Yingming</creatorcontrib><creatorcontrib>Li, Shuliang</creatorcontrib><creatorcontrib>Hua, Yutao</creatorcontrib><creatorcontrib>Cao, Zhu'an</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Peng</au><au>Huang, Yingming</au><au>Li, Shuliang</au><au>Hua, Yutao</au><au>Cao, Zhu'an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects and mechanisms of H sub(2)O sub(2) on production of dicarboxylic acid</atitle><jtitle>Biotechnology and bioengineering</jtitle><date>2001-11-20</date><risdate>2001</risdate><volume>75</volume><issue>4</issue><spage>456</spage><epage>462</epage><pages>456-462</pages><issn>0006-3592</issn><abstract>The system of producing long chain dicarboxylic acid (DCA) by Candida tropicalis is an aerobic and viscous fermentation system. A method to overcome the gas-liquid transport resistance and to increase oxygen supply is by adding hydrogen peroxide (H sub(2)O sub(2)) to the fermentation system. Here we report that the H sub(2)O sub(2) not only can enhance the oxygen supply but also change the metabolism by inducing cytochrome P450, the key enzyme of a, o-oxidation. When C. tropicalis was cultivated in a 3-L bioreactor using the combination of aeration and H sub(2)O sub(2) feeding, DCA production rates increased by about 10% after a short period of decrease at the beginning. Furthermore, the experiments showed that the maximum activities of P450 could be induced at 2 mM H sub(2)O sub(2), and the inducible mechanisms are also discussed. Moreover, we suggest that alkane might be oxidized through the "peroxide shunt pathway" when H sub(2)O sub(2) is present. By adding H sub(2)O sub(2), the DCA yield in a 22-L bioreactor could increase by 25.3% and reach 153.9 g/L.</abstract><doi>10.1002/bit.10027</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2001-11, Vol.75 (4), p.456-462 |
issn | 0006-3592 |
language | eng |
recordid | cdi_proquest_miscellaneous_18369751 |
source | Wiley-Blackwell Read & Publish Collection |
title | Effects and mechanisms of H sub(2)O sub(2) on production of dicarboxylic acid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20and%20mechanisms%20of%20H%20sub(2)O%20sub(2)%20on%20production%20of%20dicarboxylic%20acid&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Jiao,%20Peng&rft.date=2001-11-20&rft.volume=75&rft.issue=4&rft.spage=456&rft.epage=462&rft.pages=456-462&rft.issn=0006-3592&rft_id=info:doi/10.1002/bit.10027&rft_dat=%3Cproquest%3E18369751%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_183697513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18369751&rft_id=info:pmid/&rfr_iscdi=true |