Loading…
Antioxidant responses in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings
The antioxidant defense system protects turtles from oxidative stress during hibernation. The present study examined changes of the antioxidant enzymes both on mRNA level and enzyme activity level during hibernation of Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. The upstream regulato...
Saved in:
Published in: | Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2017-02, Vol.204, p.9-16 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The antioxidant defense system protects turtles from oxidative stress during hibernation. The present study examined changes of the antioxidant enzymes both on mRNA level and enzyme activity level during hibernation of Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. The upstream regulator NF-E2 related factor 2 (Nrf2) mRNA was also measured. Samples were taken at pre-hibernation (17.0°C, Mud temperature (MT)), hibernation (5.8°C, MT) and arousal (20.1°C, MT). Nrf2 exhibited a tissue-specific pattern of expression with a decrease in the brain, slight increase in the liver and heart during hibernation, and significant increase during arousal in all the three tissues. Superoxide dismutase (SOD) mRNA, catalase (CAT) mRNA, and glutathione peroxidase 3 (GPx3) mRNA exhibited a similar pattern as Nrf2 in the brain and liver during the entire hibernation period. Hepatic GPx4 mRNA level increased during hibernation and decreased during arousal, whereas it did not change in the heart. Cerebral SOD and CAT activities kept stable during the experimental period, but GPx activity decreased significantly during hibernation and arousal. Hepatic GPx enzyme activity did not change, whereas those of SOD and CAT exhibited a notable decrease during arousal. Malondialdehyde concentration did not increase during the hibernation process, indicating an effective protection of the antioxidant defense system. |
---|---|
ISSN: | 1095-6433 1531-4332 |
DOI: | 10.1016/j.cbpa.2016.10.014 |