Loading…

The cerebral venous system and hypoxia

Most hypobaric hypoxia studies have focused on oxygen delivery and therefore cerebral blood inflow. Few have studied venous outflow. However, the volume of blood entering and leaving the skull (∼700 ml/min) is considerably greater than cerebrospinal fluid production (0.35 ml/min) or edema formation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physiology (1985) 2016-01, Vol.120 (2), p.244-250
Main Authors: Wilson, Mark H, Imray, Christopher H E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most hypobaric hypoxia studies have focused on oxygen delivery and therefore cerebral blood inflow. Few have studied venous outflow. However, the volume of blood entering and leaving the skull (∼700 ml/min) is considerably greater than cerebrospinal fluid production (0.35 ml/min) or edema formation rates and slight imbalances of in- and outflow have considerable effects on intracranial pressure. This dynamic phenomenon is not necessarily appreciated in the currently taught static "Monro-Kellie" doctrine, which forms the basis of the "Tight-Fit" hypothesis thought to underlie high altitude headache, acute mountain sickness, and high altitude cerebral edema. Investigating both sides of the cerebral circulation was an integral part of the 2007 Xtreme Everest Expedition. The results of the relevant studies performed as part of and subsequent to this expedition are reviewed here. The evidence from recent studies suggests a relative venous outflow insufficiency is an early step in the pathogenesis of high altitude headache. Translation of knowledge gained from high altitude studies is important. Many patients in a critical care environment develop hypoxemia akin to that of high altitude exposure. An inability to drain the hypoxemic induced increase in cerebral blood flow could be an underappreciated regulatory mechanism of intracranial pressure.
ISSN:8750-7587
1522-1601
DOI:10.1152/japplphysiol.00327.2015